Learning Open-World Object Proposals without Learning to Classify

Overview

Learning Open-World Object Proposals without Learning to Classify

Pytorch implementation for "Learning Open-World Object Proposals without Learning to Classify" (arXiv 2021)

Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So Kweon, and Weicheng Kuo.

@article{kim2021oln,
  title={Learning Open-World Object Proposals without Learning to Classify},
  author={Kim, Dahun and Lin, Tsung-Yi and Angelova, Anelia and Kweon, In So and Kuo, Weicheng},
  journal={arXiv preprint arXiv:2108.06753},
  year={2021}
}

Introduction

Humans can recognize novel objects in this image despite having never seen them before. “Is it possible to learn open-world (novel) object proposals?” In this paper we propose Object Localization Network (OLN) that learns localization cues instead of foreground vs background classification. Only trained on COCO, OLN is able to propose many novel objects (top) missed by Mask R-CNN (bottom) on an out-of-sample frame in an ego-centric video.


Cross-category generalization on COCO

We train OLN on COCO VOC categories, and test on non-VOC categories. Note our [email protected] evaluation does not count those proposals on the 'seen' classes into the budget (k), to avoid evaluating recall on see-class objects.

Method AUC [email protected] [email protected] [email protected] [email protected] [email protected] Download
OLN-Box 24.8 18.0 26.4 33.4 39.0 45.0 model

Disclaimer

This repo is tested under Python 3.7, PyTorch 1.7.0, Cuda 11.0, and mmcv==1.2.5.

Installation

This repo is built based on mmdetection.

You can use following commands to create conda env with related dependencies.

conda create -n oln python=3.7 -y
conda activate oln
conda install pytorch=1.7.0 torchvision cudatoolkit=11.0 -c pytorch -y
pip install mmcv-full
pip install -r requirements.txt
pip install -v -e . 

Please also refer to get_started.md for more details of installation.

Prepare datasets

COCO dataset is available from official websites. It is recommended to download and extract the dataset somewhere outside the project directory and symlink the dataset root to $OLN/data as below.

object_localization_network
├── mmdet
├── tools
├── configs
├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── train2017
│   │   ├── val2017
│   │   ├── test2017

Testing

Our trained models are available for download here. Place it under trained_weights/latest.pth and run the following commands to test OLN on COCO dataset.

# Multi-GPU distributed testing
bash tools/dist_test_bbox.sh configs/oln_box/oln_box.py \
trained_weights/latest.pth ${NUM_GPUS}
# OR
python tools/test.py configs/oln_box/oln_box.py work_dirs/oln_box/latest.pth --eval bbox

Training

# Multi-GPU distributed training
bash tools/dist_train.sh configs/oln_box/oln_box.py ${NUM_GPUS}

Contact

If you have any questions regarding the repo, please contact Dahun Kim ([email protected]) or create an issue.

Owner
Dahun Kim
Korea Advanced Institute of Science and Technology
Dahun Kim
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022