The first dataset on shadow generation for the foreground object in real-world scenes.

Overview

Object-Shadow-Generation-Dataset-DESOBA

Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the background in a composite image, that is, generating shadow for the foreground object according to background information, to make the composite image more realistic.

Our dataset DESOBA is a synthesized dataset for Object Shadow Generation. We build our dataset on the basis of Shadow-OBject Association dataset SOBA, which collects real-world images in complex scenes and provides annotated masks for object-shadow pairs. Based on SOBA dataset, we remove all the shadows to construct our DEshadowed Shadow-OBject Association(DESOBA) dataset, which can be used for shadow generation task and other shadow-related tasks as well. We illustrate the process of our DESOBA dataset construction based on SOBA dataset in the figure below.

Illustration of DESOBA dataset construction: The green arrows illustrate the process of acquiring paired data for training and evaluation. Given a ground-truth target image Ig, we manually remove all shadows to produce a deshadowed image Id. Then, we randomly select a foreground object in Ig, and replace its shadow area with the counterpart in Id to synthesize a composite image Ic without foreground shadow. Ic and Ig form a pair of input composite image and ground-truth target image. The red arrow illustrates our shadow generation task. Given Ic and its foreground mask Mfo, we aim to generate the target image Ig with foreground shadow.

Our DESOBA dataset contains 840 training images with totally 2,999 object-shadow pairs and 160 test images with totally 624 object-shadow pairs. The DESOBA dataset is provided in Baidu Cloud (access code: sipx), or Google Drive.

Prerequisites

  • Python
  • Pytorch
  • PIL

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/bcmi/Object-Shadow-Generation-Dataset-DESOBA.git
cd Object-Shadow-Generation-Dataset-DESOBA
  • Download the DESOBA dataset.

  • We provide the code of obtaining training/testing tuples, each tuple contains foreground object mask, foreground shadow mask, background object mask, background shadow mask, shadow image, and synthetic composite image without foreground shadow mask. The dataloader is available in /data_processing/data/DesobaSyntheticImageGeneration_dataset.py, which can be used as dataloader in training phase or testing phase.

  • We also provide the code of visualization of training/testing tuple, run:

python Vis_Desoba_Dataset.py

Vis_Desoba_Dataset.py is available in /data_processing/.

  • We show some examples of training/testing tuples in below:

from left to right: synthetic composite image without foreground shadow, target image with foreground shadow, foreground object mask, foreground shadow mask, background object mask, and background shadow mask.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [arxiv]:

@article{hong2021shadow,
  title={Shadow Generation for Composite Image in Real-world Scenes},
  author={Hong, Yan and Niu, Li and Zhang, Jianfu and Zhang, Liqing},
  journal={arXiv preprint arXiv:2104.10338},
  year={2021}
}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022