Cross-Document Coreference Resolution

Related tags

Deep Learningcoref
Overview

Cross-Document Coreference Resolution

This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in our papers:

The models are trained on ECB+, but they can be used for any setting of multiple documents.

Getting started

  • Install python3 requirements pip install -r requirements.txt

Extract mentions and raw text from ECB+

Run the following script in order to extract the data from ECB+ dataset and build the gold conll files. The ECB+ corpus can be downloaded here.

python get_ecb_data.py --data_path path_to_data

Training Instructions

The core of our model is the pairwise scorer between two spans, which indicates how likely two spans belong to the same cluster.

Training method

We present 3 ways to train this pairwise scorer:

  1. Pipeline: first train a span scorer, then train the pairwise scorer using the same spans at each epoch.
  2. Continue: pre-train the span scorer, then train the pairwise scorer while keep training the span scorer.
  3. End-to-end: train together both models from scratch.

In order to choose the training method, you need to set the value of the training_method in the config_pairwise.json to pipeline, continue or e2e. In our paper, we found the continue method to perform the best for event coreference and we apply it for entity and ALL as well.

What are the labels ?

In ECB+, the entity and event coreference clusters are annotated separately, making it possible to train a model only on event or entity coreference. Therefore, our model also allows to be trained on events, entity, or both. You need to set the value of the mention_type in the config_pairwise.json (and config_span_scorer.json) to events, entities or mixed (corresponding to ALL in the paper).

Running the model

In both pipeline and continue methods, you need to first run the span scorer model

python train_span_scorer --config configs/config_span_scorer.json

For the pairwise scorer, run the following script

python train_pairwise_scorer --config configs/config_pairwise.json

Some important parameters in config_pairwise.json:

  • max_mention_span
  • top_k: pruning coefficient
  • training_method: (pipeline, continue, e2e)
  • subtopic: (true, false) whether to train at the topic or subtopic level (ECB+ notions).

Tuning threshold for agglomerative clustering

The training above will save 10 models (one for each epoch) in the specified directory, while each model is composed of a span_repr, a span scorer and a pairwise scorer. In order to find the best model and the best threshold for the agglomerative clustering, you need to do an hyperparameter search on the 10 models + several values for threshold, evaluated on the dev set. To do that, please set the config_clustering.json (split: dev) and run the two following scripts:

python tuned_threshold.py --config configs/config_clustering.json

python run_scorer.py [path_of_directory_of_conll_files] [mention_type]

Prediction

Given the trained pairwise scorer, the best model_num and the threshold from the above training and tuning, set the config_clustering.json (split: test) and run the following script.

python predict.py --config configs/config_clustering

(model_path corresponds to the directory in which you've stored the trained models)

An important configuration in the config_clustering is the topic_level. If you set false , you need to provide the path to the predicted topics in predicted_topics_path to produce conll files at the corpus level.

Evaluation

The output of the predict.py script is a file in the standard conll format. Then, it's straightforward to evaluate it with its corresponding gold conll file (created in the first step), using the official conll coreference scorer that you can find here or the coval system (python implementation).

Make sure to use the gold files of the same evaluation level (topic or corpus) as the predictions.

Notes

  • If you chose to train the pairwise with the end-to-end method, you don't need to provide a span_repr_path or a span_scorer_path in the config_pairwise.json.

  • If you use this model with gold mentions, the span scorer is not relevant, you should ignore the training method.

  • If you're interested in a newer but heavier model, check out our cross-encoder model

Team

Owner
Arie Cattan
PhD candidate, Computer Science, Bar-Ilan University
Arie Cattan
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023