JittorVis - Visual understanding of deep learning models

Overview

JittorVis: Visual understanding of deep learning model

Image of JittorVis

JittorVis is an open-source library for understanding the inner workings of Jittor models by visually illustrating their dataflow graphs.

Deep neural networks have achieved breakthrough performance in many tasks such as image recognition, detection, segmentation, generation, etc. However, the development of high-quality deep models typically relies on a substantial amount of trial and error, as there is still no clear understanding of when and why a deep model works. Also, the complexity of the deep neural network architecture brings difficulties to debugging and modifying the model. JittorVis facilitates the visualization of the dataflow graph of the deep neural network at different levels, which brings users a deeper understanding of the dataflow graph from the whole to the part to debug and modify the model more effectively.

JittorVis provides the visualization and tooling needed for machine learning experimentation:

  • Displaying the hierarchical structure of the model dataflow graph
  • Visualizing the dataflow graph at different levels (ops and layers)
  • Profiling Jittor programs

Features to be supported in the future:

  • Tracking and visualizing metrics such as loss and accuracy
  • Viewing line charts of weights, biases, or other tensors as they change over time
  • And much more

Related Links:

Installation

JittorVis need python version >= 3.7.

pip install jittorvis
or
pip3 install jittorvis

Usage

There are several ways to use JittorVis.

  1. Visualizing a Jittor model directly.
import jittor as jt
from jittor import Module
from jittor import nn
import numpy as np

class Model(Module):
    def __init__(self):
        self.layer1 = nn.Linear(1, 10)
        self.relu = nn.Relu() 
        self.layer2 = nn.Linear(10, 1)
    def execute (self,x) :
        x = self.layer1(x)
        x = self.relu(x)
        x = self.layer2(x)
        return x

model = Model()

from jittorvis import server
input = jt.float32(np.random.rand(10, 1))
server.visualize(input, model, host = '0.0.0.0')
# JittorVis start.
# server.stop()
# JittorVis stop.

Then open the link 'http://localhost:5005/static/index.html' in your browser.

  1. Visualizing an exported Jittor computational graph (an example graph can be downloaded here).
from jittorvis import server
server.run('test.pkl', host='0.0.0.0', port=5005)
# JittorVis start.
# server.stop()
# JittorVis stop.
  1. Visualizing an exported Jittor computational graph with command line interface.
jittorvis --data_path test.pkl --host='0.0.0.0' --port=5005

Visualization

JittorVis contains three main views: statistics view, navigation view, and graph structure view.

  1. Statistics view:

    The statistics view provides statistics information for the deep neural network, such as loss and accuracy.

  2. Navigation view:

    The navigation view visualizes the hierarchical structure of a Jittor model to facilitate the exploration of the model. Each tree node represents a computational node in the dataflow graph, and each leaf node represents a basic operation in the graph. Users can click one intermediate node to selected its computational nodes and turn to the graph structure view to explore their graph structure.

Drawing

  1. Graph structure view:

    The graph structure view displays the graph structure of a Jittor graph. In the graph structure view, each rectangle represents a computational node, and each link represents dataflows among computational nodes. The graph structure view has the following interactions:

    • Drag to pan
    • Scroll to zoom in and out
    • Click one computational node to explore its feature map
    • Click the top-right plus button of one computational node to explore its children
    • Click the top-right button “←” to return to the previous level of the graph
    • Right-click one computational node to explore its detailed information

Drawing

Citation

Towards Better Analysis of Deep Convolutional Neural Networks

@article {
    liu2017convolutional,
    author={Liu, Mengchen and Shi, Jiaxin and Li, Zhen and Li, Chongxuan and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Towards Better Analysis of Deep Convolutional Neural Networks},
    year={2017},
    volume={23},
    number={1},
    pages={91-100}
}

Analyzing the Training Processes of Deep Generative Models

@article {
    liu2018generative,
    author={Liu, Mengchen and Shi, Jiaxin and Cao, Kelei and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Training Processes of Deep Generative Models},
    year={2018},
    volume={24},
    number={1},
    pages={77-87}
}

Analyzing the Noise Robustness of Deep Neural Networks

@article {
    cao2021robustness,
    author={Cao, Kelei and Liu, Mengchen and Su, Hang and Wu, Jing and Zhu, Jun and Liu, Shixia},
    journal={IEEE Transactions on Visualization and Computer Graphics},
    title={Analyzing the Noise Robustness of Deep Neural Networks},
    year={2021},
    volume={27},
    number={7},
    pages={3289-3304}
}

The Team

JittorVis is currently maintained by the THUVIS Group. If you are also interested in JittorVis and want to improve it, Please join us!

License

JittorVis is Apache 2.0 licensed, as found in the LICENSE.txt file.

Owner
thu-vis
Tsinghua Visual Analytics Group
thu-vis
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023