This is a Deep Leaning API for classifying emotions from human face and human audios.

Overview

Emotion AI

This is a Deep Leaning API for classifying emotions from human face and human audios.

alt

Starting the server

To start the server first you need to install all the packages used by running the following command:

pip install -r requirements.txt
# make sure your current directory is "server"

After that you can start the server by running the following commands:

  1. change the directory from server to api:
cd api
  1. run the app.py
python app.py

The server will start at a default PORT of 3001 which you can configure in the api/app.py on the Config class:

class AppConfig:
    PORT = 3001
    DEBUG = False

If everything went well you will be able to make api request to the server.

EmotionAI

Consist of two parallel models that are trained with different model architectures to save different task. The one is for audio classification and the other is for facial emotion classfication. Each model is served on a different endpoint but on the same server.

Audio Classification

Sending an audio file to the server at http://127.0.0.1:3001/api/classify/audio using the POST method we will be able to get the data that looks as follows as the json response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Classifying audios

  1. Using cURL

To classify the audio using cURL make sure that you open the command prompt where the audio files are located for example in my case the audios are located in the audios folder so i open the command prompt in the audios folder or else i will provide the absolute path when making a cURL request for example

curl -X POST -F [email protected] http://127.0.0.1:3001/api/classify/audio

If everything went well we will get the following response from the server:

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using Postman client

To make this request with postman we do it as follows:

  • Change the request method to POST at http://127.0.0.1:3001/api/classify/audio
  • Click on form-data
  • Select type to be file on the KEY attribute
  • For the KEY type audio and select the audio you want to predict under value Click send
  • If everything went well you will get the following response depending on the audio you have selected:
{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}
  1. Using JavaScript fetch api.

  2. First you need to get the input from html

  3. Create a formData object

  4. make a POST requests

res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("audio", input);
fetch("http://127.0.0.1:3001/api/classify/audio", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": {
    "emotion": { "class": "sad", "label": 3, "probability": 0.22 },
    "emotion_intensity": { "class": "normal", "label": 0, "probability": 0.85 },
    "gender": { "class": "male", "label": 0, "probability": 1.0 }
  },
  "success": true
}

Notebooks

If you want to see how the models were trained you can open the respective notebooks:

  1. Audio Classification
Owner
crispengari
ai || software development. (creator of initialiseur)
crispengari
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022