Semi-Autoregressive Transformer for Image Captioning

Related tags

Deep Learningsatic
Overview

Semi-Autoregressive Transformer for Image Captioning

Requirements

  • Python 3.6
  • Pytorch 1.6

Prepare data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please follow this instruction to prepare the adaptive bottom-up features and place them under data/mscoco/. Please follow this instruction to prepare the features and place them under data/cocotest/ for online test evaluation.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results, such as SATIC(K=2, bw=1) after self-critical training, just run

python3 eval.py  --model  save/nsc-sat-2-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-2-from-nsc-seqkd/infos_nsc-sat-2-from-nsc-seqkd-best.pkl    --batch_size  1   --beam_size   1   --id  nsc-sat-2-from-nsc-seqkd   

Online Evaluation

Please first run

python3 eval_cocotest.py  --input_json  data/cocotest.json  --input_fc_dir data/cocotest/cocotest_bu_fc --input_att_dir  data/cocotest/cocotest_bu_att   --input_label_h5    data/cocotalk_label.h5  --num_images -1    --language_eval 0
--model  save/nsc-sat-4-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-4-from-nsc-seqkd/infos_nsc-sat-4-from-nsc-seqkd-best.pkl    --batch_size  32   --beam_size   3   --id   captions_test2014_alg_results  

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as SATIC(K=2) model with sequence-level distillation and weight initialization, run
python3  train.py   --noamopt --noamopt_warmup 20000 --label_smoothing 0.0  --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0 --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15    --input_label_h5   data/cocotalk_seq-kd-from-nsc-transformer-baseline-b5_label.h5   --checkpoint_path   save/sat-2-from-nsc-seqkd   --id   sat-2-from-nsc-seqkd   --K  2
  1. Then in the second training stage, copy the above pretrained model first
cd save
./copy_model.sh  sat-2-from-nsc-seqkd    nsc-sat-2-from-nsc-seqkd
cd ..

and then run

python3  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 10  --max_epochs    40   --input_label_h5    data/cocotalk_label.h5   --start_from   save/nsc-sat-2-from-nsc-seqkd   --checkpoint_path   save/nsc-sat-2-from-nsc-seqkd  --id  nsc-sat-2-from-nsc-seqkd    --K 2

Citation

@article{zhou2021semi,
  title={Semi-Autoregressive Transformer for Image Captioning},
  author={Zhou, Yuanen and Zhang, Yong and Hu, Zhenzhen and Wang, Meng},
  journal={arXiv preprint arXiv:2106.09436},
  year={2021}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022