2D Human Pose estimation using transformers. Implementation in Pytorch

Overview

PE-former: Pose Estimation Transformer

Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challenging vision tasks with transformers rely on convolutional backbones for feature extraction.

POTR is a pure transformer architecture (no CNN backbone) for 2D body pose estimation. It uses an encoder-decoder architecture with a vision transformer as an encoder and a transformer decoder (derived from DETR).

You can use the code in this repository to train and evaluate different POTR configurations on the COCO dataset.

Model

POTR is based on building blocks derived from recent SOTA models. As shown in the figure there are two major components: A Visual Transformer encoder, and a Transformer decoder.

model

The input image is initially converted into tokens following the ViT paradigm. A position embedding is used to help retain the patch-location information. The tokens and the position embedding are used as input to transformer encoder. The transformed tokens are used as the memory input of the transformer decoder. The inputs of the decoder are M learned queries. For each query the network will produce a joint prediction. The output tokens from the transformer decoder are passed through two heads (FFNs).

  • The first is a classification head used to predict the joint type (i.e class) of each query.
  • The second is a regression head that predicts the normalized coordinates (in the range [0,1]) of the joint in the input image.

Predictions that do not correspond to joints are mapped to a "no object" class.

Acknowledgements

The code in this repository is based on the following:

Thank you!

Preparing

Create a python venv and install all the dependencies:

python -m venv pyenv
source pyenv/bin/activate
pip install -r requirements.txt

Training

Here are some CLI examples using the lit_main.py script.

Training POTR with a deit_small encoder, patch size of 16x16 pixels and input resolution 192x256:

python lit_main.py --vit_arch deit_deit_small --patch_size 16 --batch_size 42 --input_size 192 256 --hidden_dim 384 --vit_dim 384 --gpus 1 --num_workers 24

POTR with Xcit_small_p16 encoder:

 python lit_main.py --vit_arch xcit_small_12_p16 --batch_size 42 --input_size 288 384 --hidden_dim 384 --vit_dim 384 --gpus 1 --num_workers 24   --vit_weights https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_384_dist.pth

POTR with the ViT as Backbone (VAB) configuration:

 python lit_main.py --vit_as_backbone --vit_arch resnet50 --batch_size 42 --input_size 192 256 --hidden_dim 384 --vit_dim 384 --gpus 1 --position_embedding learned_nocls --num_workers 16 --num_queries 100 --dim_feedforward 1536 --accumulate_grad_batches 1

Baseline that uses a resnet50 (pretrained with dino) as an encoder:

 python lit_main.py --vit_arch resnet50 --patch_size 16 --batch_size 42 --input_size 192 256 --hidden_dim 384 --vit_dim 384 --gpus 1 --num_workers 24 --vit_weights https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth --position_embedding learned_nocls

Check the lit_main.py cli arguments for a complete list.

python lit_main.py --help

Evaluation

Evaluate a trained model using the evaluate.py script.

For example to evaluate POTR with an xcit_small_12_p8 encoder:

python evaluate.py --vit_arch xcit_small_12_p8 --patch_size 8 --batch_size 42 --input_size 192 256 --hidden_dim 384 --vit_dim 384  --position_embedding enc_xcit --num_workers 16 --num_queries 100 --dim_feedforward 1536 --init_weights paper_experiments/xcit_small12_p8_dino_192_256_paper/checkpoints/checkpoint-epoch\=065-AP\=0.736.ckpt --use_det_bbox

Evaluate POTR with a deit_small encoder:

 python evaluate.py --vit_arch deit_deit_small --patch_size 16 --batch_size 42 --input_size 192 256 --hidden_dim 384 --vit_dim 384 --num_workers 24 --init_weights lightning_logs/version_0/checkpoints/checkpoint-epoch\=074-AP\=0.622.ckpt  --use_det_bbox

Set the argument of --init_weights to your model's checkpoint.

Model Zoo

name input params AP AR url
POTR-Deit-dino-p8 192x256 36.4M 70.6 78.1 model
POTR-Xcit-p16 288x384 40.6M 70.2 77.4 model
POTR-Xcit-dino-p16 288x384 40.6M 70.7 77.9 model
POTR-Xcit-dino-p8 192x256 40.5M 71.6 78.7 model
POTR-Xcit-dino-p8 288x384 40.5M 72.6 79.4 model

Check the experiments folder for configuration files and evaluation results.

All trained models and tensorboard training logs can be downloaded from this drive folder.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Owner
Panteleris Paschalis
Panteleris Paschalis
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021