Deep Inertial Prediction (DIPr)

Related tags

Deep Learningdipr
Overview

Deep Inertial Prediction

For more information and context related to this repo, please refer to our website.

Getting Started (non Docker)

Note: you will need to have pytorch installed (tested with 1.8 and higher)

python3 -m venv <venv_path>
source <venv_path>/bin/activate

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
pip3 install -e .
python3 dipr/evaluate.py --challenge_folder <data_path>

Getting Started (with Docker)

You will need docker and realpath commands to be installed

git clone https://github.com/arcturus-industries/dipr.git && cd dipr
# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

M1 Mac note: You can use either the X86_64 container or the arm64 container. If you use the x86_64 container, you may see "Could not initialize NNPACK! Reason: Unsupported hardware." This is only a warning. It will however take a long time to run (about 30 minutes or longer after the docker build finishes)

Package Content

  • dataset.py - sample API to read the challenge hdf5 dataset format
  • cnn_backend.py - a file with CNN inference backends (currenly only TorchScript is supported). If you plan to work on a DL inference framework other than TorchScript, implement it there
  • noise_utils.py - a file with noise calibration and parameters, you may adjust them to generate your own noise levels
  • imu_fallback.py - a sample implmentation of ImuFallback with CNN velocity measurements
  • utils.py - auxiliary tools
  • evaluate.py - sample test script that runs ImuFallback on available datasets and outputs Mean Absolute Velocity metric

Running sample evaluation script

python3 evaluate.py --challenge_folder <data_path>

or for the docker versions

# on x86_64 systems
./build-and-run.sh <data_path>
# on arm64 systems (like mac M1)
./build-and-run-aarch64.sh <data_path>

It will output something like:

python3.9 evaluate.py -df shared
Dataset OpenVR_2021-09-02_17-40-34-synthetic, segments durations [7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 ] sec
Processing datasets: 100%|██████████| 1/1 [05:04<00:00, 304.92s/files]
all_vel_mae_cnn 2.12cm/s
all_vel_mae_fallback 9.73cm/s
all_pose_mae_fallback 15.51cm

Which mean it found OpenVR_2021-09-02_17-40-34-synthetic test dataset, and executed ImuFallback on 13 segments of duration 7 seconds, and estimated over them averaged Mean Absolute Velocity Error as 9.73cm/s

It also outputs image with tracking plots to <challenge_folder_root>/_results/<datasetname>.png. There are plots for IMU only tracking, ImuFallback + CNN traking and ground truth

Challenge folder Content

train_synthetic - a folder with train datasets, available after sign-up https://dipr.ai/sign-up

test_synthetic - a folder where evaluation script looks for test datasets (we share only one example dataset)

_results - a folder where evaluation script stores some results

pretrained - an example CNN model we ship

Known Issues

Installing dependencies natively on Apple Silicon may fail with the following:

> pip3 install -e .
...
    error: Command "clang -Wno-unused-result -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG -g -fwrapv -O3 -Wall -iwithsysroot/System/Library/Frameworks/System.framework/PrivateHeaders -iwithsysroot/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/Headers -arch arm64 -arch x86_64 -Werror=implicit-function-declaration -ftrapping-math -DNPY_INTERNAL_BUILD=1 -DHAVE_NPY_CONFIG_H=1 -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -D_LARGEFILE64_SOURCE=1 -DNO_ATLAS_INFO=3 -DHAVE_CBLAS -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/umath -Inumpy/core/include -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/include/numpy -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/distutils/include -Inumpy/core/src/common -Inumpy/core/src -Inumpy/core -Inumpy/core/src/npymath -Inumpy/core/src/multiarray -Inumpy/core/src/umath -Inumpy/core/src/npysort -Inumpy/core/src/_simd -I<venv_path>/include -I/Applications/Xcode.app/Contents/Developer/Library/Frameworks/Python3.framework/Versions/3.8/include/python3.8 -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/common -Ibuild/src.macosx-10.14-x86_64-3.8/numpy/core/src/npymath -c numpy/core/src/multiarray/dragon4.c -o build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o -MMD -MF build/temp.macosx-10.14-x86_64-3.8/numpy/core/src/multiarray/dragon4.o.d -msse3 -I/System/Library/Frameworks/vecLib.framework/Headers" failed with exit status 1
    ----------------------------------------
    ERROR: Failed building wheel for numpy

Workaround: use the Docker instructions

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Arcturus Industries
Arcturus Industries
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI 340 Dec 30, 2022

LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022