Explainer for black box models that predict molecule properties

Related tags

Deep Learningexmol
Overview

Explaining why that molecule

GitHub tests paper docs PyPI version MIT license

exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help users understand why a molecule is predicted to have a property.

Install

pip install exmol

Counterfactual Generation

Our package implements the Model Agnostic Counterfactual Compounds with STONED (MACCS) to generate counterfactuals. A counterfactual can explain a prediction by showing what would have to change in the molecule to change its predicted class. Here is an eample of a counterfactual:

This package is not popular. If the package had a logo, it would be popular.

In addition to having a changed prediction, a molecular counterfactual must be similar to its base molecule as much as possible. Here is an example of a molecular counterfactual:

counterfactual demo

The counterfactual shows that if the carboxylic acid were an ester, the molecule would be active. It is up to the user to translate this set of structures into a meaningful sentence.

Usage

Let's assume you have a deep learning model my_model(s) that takes in one SMILES string and outputs a predicted binary class. To generate counterfactuals, we need to wrap our function so that it can take both SMILES and SELFIES, but it only needs to use one.

We first expand chemical space around the prediction of interest

import exmol

# mol of interest
base = 'CCCO'

samples = exmol.sample_space(base, lambda smi, sel: my_model(smi), batched=False)

Here we use a lambda to wrap our function and indicate our function can only take one SMILES string, not a list of them with batched=False. Now we select counterfactuals from that space and plot them.

cfs = exmol.cf_explain(samples)
exmol.plot_cf(cfs)

set of counterfactuals

We can also plot the space around the counterfactual. This is computed via PCA of the affinity matrix -- the similarity with the base molecule. Due to how similarity is calculated, the base is going to be the farthest from all other molecules. Thus your base should fall on the left (or right) extreme of your plot.

cfs = exmol.cf_explain(samples)
exmol.plot_space(samples, cfs)

chemical space

Each counterfactual is a Python dataclass with information allowing it to be used in your own analysis:

print(cfs[0])
Examples(
  smiles='CCOC(=O)c1ccc(N=CN(Cl)c2ccccc2)cc1',
  selfies='[C][C][O][C][Branch1_2][C][=O][C][=C][C][=C][Branch1_1][#C][N][=C][N][Branch1_1][C][Cl][C][=C][C][=C][C][=C][Ring1][Branch1_2][C][=C][Ring1][S]',
  similarity=0.8181818181818182,
  yhat=-5.459493637084961,
  index=1807,
  position=array([-6.11371691,  1.24629293]),
  is_origin=False,
  cluster=26,
  label='Counterfactual')

Chemical Space

When calling exmol.sample_space you can pass preset=<preset>, which can be one of the following:

  • 'narrow': Only one change to molecular structure, reduced set of possible bonds/elements
  • 'medium': Default. One or two changes to molecular structure, reduced set of possible bonds/elements
  • 'wide': One through five changes to molecular structure, large set of possible bonds/elements
  • 'chemed': A restrictive set where only pubchem molecules are considered. Experimental

You can also pass num_samples as a "request" for number of samples. You will typically end up with less due to degenerate molecules. See API for complete description.

SVG

Molecules are by default drawn as PNGs. If you would like to have them drawn as SVGs, call insert_svg after calling plot_space or plot_cf

import skunk
exmol.plot_cf(exps)
svg = exmol.insert_svg(exps, mol_fontsize=16)

# for Jupyter Notebook
skunk.display(svg)

# To save to file
with open('myplot.svg', 'w') as f:
    f.write(svg)

This is done with the skunk 🦨 library.

API and Docs

Read API here. You should also read the paper (see below) for a more exact description of the methods and implementation.

Citation

Please cite Wellawatte et al.

 @article{wellawatte_seshadri_white_2021,
 place={Cambridge},
 title={Model agnostic generation of counterfactual explanations for molecules},
 DOI={10.33774/chemrxiv-2021-4qkg8},
 journal={ChemRxiv},
 publisher={Cambridge Open Engage},
 author={Wellawatte, Geemi P and Seshadri, Aditi and White, Andrew D},
 year={2021}}

This content is a preprint and has not been peer-reviewed.

Comments
  • Add LIME explanations

    Add LIME explanations

    This is a big PR!

    • [x] Document LIME function
    • [x] Compute t-stats using examples that have non-zero weights
    • [x] Add plotting code for descriptors - needs SMARTS annotations for MACCS keys (166 files)
    • [x] Add plotting code for chemical space and fit
    • [x] Description in readme
    • [x] Clean up notebooks and add documentation
    • [x] Remove extra files
    • [x] Add LIME notebooks to CI?
    opened by hgandhi2411 11
  • Error while plotting counterfactuals using plot_cf()

    Error while plotting counterfactuals using plot_cf()

    plot_cf() function errors out with the following error. This behavior is also consistent across all notebooks in paper/.

    ---------------------------------------------------------------------------
    TypeError                                 Traceback (most recent call last)
    <ipython-input-10-b6c8ed26216e> in <module>
          1 fkw = {"figsize": (8, 6)}
          2 mpl.rc("axes", titlesize=12)
    ----> 3 exmol.plot_cf(exps, figure_kwargs=fkw, mol_size=(450, 400), nrows=1)
          4 
          5 plt.savefig("rf-simple.png", dpi=180)
    
    /gpfs/fs2/scratch/hgandhi/exmol/exmol/exmol.py in plot_cf(exps, fig, figure_kwargs, mol_size, mol_fontsize, nrows, ncols)
        682         title += f"\nf(x) = {e.yhat:.3f}"
        683         axs[i].set_title(title)
    --> 684         axs[i].imshow(np.asarray(img), gid=f"rdkit-img-{i}")
        685         axs[i].axis("off")
        686     for j in range(i, C * R):
    
    ~/.local/lib/python3.7/site-packages/matplotlib/__init__.py in inner(ax, data, *args, **kwargs)
       1359     def inner(ax, *args, data=None, **kwargs):
       1360         if data is None:
    -> 1361             return func(ax, *map(sanitize_sequence, args), **kwargs)
       1362 
       1363         bound = new_sig.bind(ax, *args, **kwargs)
    
    ~/.local/lib/python3.7/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, filternorm, filterrad, resample, url, **kwargs)
       5607                               resample=resample, **kwargs)
       5608 
    -> 5609         im.set_data(X)
       5610         im.set_alpha(alpha)
       5611         if im.get_clip_path() is None:
    
    ~/.local/lib/python3.7/site-packages/matplotlib/image.py in set_data(self, A)
        699                 not np.can_cast(self._A.dtype, float, "same_kind")):
        700             raise TypeError("Image data of dtype {} cannot be converted to "
    --> 701                             "float".format(self._A.dtype))
        702 
        703         if self._A.ndim == 3 and self._A.shape[-1] == 1:
    
    TypeError: Image data of dtype <U14622 cannot be converted to float
    
    opened by hgandhi2411 6
  • Error after installation

    Error after installation

    Hi,

    First at all, thank you for your work!. I am obtaining a problem installing your library, o better say when I do "import exmol", I obtaing one error:"No module named 'dataclasses'".

    I have installed as: pip install exmol...

    Thanks!

    opened by PARODBE 6
  • CODEX Example

    CODEX Example

    While messing around with CODEX, I noticed it wants to compute ECFP4 fingerprints using a different method and this gives slightly different similarities. @geemi725 could you double-check the ECFP4 implementation we have is correct, or is the CODEX one correct?

    image

    opened by whitead 6
  • Object has no attribute '__code__'

    Object has no attribute '__code__'

    Hi there, I noticed that sample_space does not seem to work with class instances, because they do not have a __code__ attribute:

    import exmol
    class A:
        pass
    exmol.sample_space('C', A(), batched=True)
    
    AttributeError: 'A' object has no attribute '__code__'
    

    Is there any way around this other than forcing the call to a separate function?

    opened by oiao 5
  • The module 'exmol' has no attribute 'lime_explain'

    The module 'exmol' has no attribute 'lime_explain'

    In the notebook RF-lime.ipynb, the command

    exmol.lime_explain(space, descriptor_type=descriptor_type)

    gives a error module 'exmol' has no attribute 'lime_explain'

    Please, let me know how to fix this error. Thanks.

    opened by andresilvapimentel 5
  • Easier usage of explain

    Easier usage of explain

    Working through some examples, I've noted the following things:

    1. Descriptor type should have a default - maybe MACCS since the plots will show-up
    2. Maybe we should only save SVGs, rather than return unless prompted
    3. We should do string comparison for descriptor types using lowercase strings, so that classic and Classic and ecfp are valid.
    4. We probably shouldn't save without a filename - it is unexpected
    opened by whitead 4
  • Allow using custom list of molecules

    Allow using custom list of molecules

    Hello @whitead, this is very nice package !

    I found the new chemed option very useful and thought extending it to any list of molecule would make sense.

    Here is the main change to the API:

    explanation = exmol.sample_space(
          "CCCC",
          model,
          preset="custom", #use custom preset
          batched=False,
          data=data, # provide list of smiles or molecules
    )
    

    Let me know if this PR make sense.

    opened by maclandrol 4
  • Target molecule frequently on the edge of sample space visualization

    Target molecule frequently on the edge of sample space visualization

    In your example provided in the code, the target molecule is on the edge of the sampled distribution (in the PCA plot). I also find this happens very frequently with my experiments on my model. I think this suggests that the sampling produces molecules that are not evenly distributed around the target. I just want to verify that this is a property of the STONED sampling algorithm, and not an artifact of the visualization code (which it does not seem to be). I've attached an example of my own, for both "narrow" and "medium" presets.

    preset="narrow", nmols=10

    explain_narrow_0 05_10

    preset="medium", nmols=10

    explain_medium_0 05_10

    opened by adamoyoung 3
  • Sanitizing SMILES removes chirality information

    Sanitizing SMILES removes chirality information

    On this line of sample_space(), chirality information of origin_smiles is removed. The output is then unsuitable as input to a chirality-aware ML model, e.g. to distinguish L vs. D amino acids which are important in models of binding affinity. Could the option to skip this sanitization step be provided to the user?

    PS: Great code base and beautiful visualizations! We're finding it very useful in explaining our Gaussian Process models. The future of SAR ←→ ML looks exciting.

    opened by tianyu-lu 2
  • Release 0.5.0 on pypi

    Release 0.5.0 on pypi

    Are you planning to release 0.5.0 on pypi? I am maintaining the conda package of exmol and I would like to bump it to 0.5.0. See https://github.com/conda-forge/exmol-feedstock

    Thanks!

    opened by hadim 2
  • run_STONED couldn't generate SMILES after 30 minutes

    run_STONED couldn't generate SMILES after 30 minutes

    For certain SMILES, run_STONED() failed to generate after running for so long. So far, one SMILES known to cause such issue is

    [Na+].[Na+].[Na+].[Na+].[Na+].[O-][S](=O)(=O)OCC[S](=O)(=O)c1cccc(Nc2nc(Cl)nc(Nc3cc(cc4C=C(\C(=N/Nc5ccc6c(cccc6[S]([O-])(=O)=O)c5[S]([O-])(=O)=O)C(=O)c34)[S]([O-])(=O)=O)[S]([O-])(=O)=O)n2)c1

    Here is how I use the function: exmol.run_stoned(smiles, num_samples=10, max_mutations=1).

    opened by qcampbel 2
Releases(v2.2.1)
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022