A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

Overview

CapsGNN

PWC codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019).

Abstract

The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph embeddings. Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects. The attention module incorporated in CapsGNN is used to tackle graphs with various sizes which also enables the model to focus on critical parts of the graphs. Our extensive evaluations with 10 graph-structured datasets demonstrate that CapsGNN has a powerful mechanism that operates to capture macroscopic properties of the whole graph by data-driven. It outperforms other SOTA techniques on several graph classification tasks, by virtue of the new instrument.

This repository provides a PyTorch implementation of CapsGNN as described in the paper:

Capsule Graph Neural Network. Zhang Xinyi, Lihui Chen. ICLR, 2019. [Paper]

The core Capsule Neural Network implementation adapted is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "labels": {"0": "A", "1": "B", "2": "C", "3": "A", "4": "B"},
 "target": 1}

The **edges** key has an edge list value which descibes the connectivity structure. The **labels** key has labels for each node which are stored as a dictionary -- within this nested dictionary labels are values, node identifiers are keys. The **target** key has an integer value which is the class membership.

Outputs

The predictions are saved in the `output/` directory. Each embedding has a header and a column with the graph identifiers. Finally, the predictions are sorted by the identifier column.

Options

Training a CapsGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.
  --prediction-path   STR    Output predictions file.     Default is `output/watts_predictions.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 100.
  --batch-size                  INT     Number fo graphs per batch.        Default is 32.
  --gcn-filters                 INT     Number of filters in GCNs.         Default is 20.
  --gcn-layers                  INT     Number of GCNs chained together.   Default is 2.
  --inner-attention-dimension   INT     Number of neurons in attention.    Default is 20.  
  --capsule-dimensions          INT     Number of capsule neurons.         Default is 8.
  --number-of-capsules          INT     Number of capsules in layer.       Default is 8.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatuls is 10^-6.
  --lambd                       FLOAT   Regularization parameter.          Default is 0.5.
  --theta                       FLOAT   Reconstruction loss weight.        Default is 0.1.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and save the predictions. Training a model on the default dataset:

$ python src/main.py

Training a CapsGNNN model for a 100 epochs.

$ python src/main.py --epochs 100

Changing the batch size.

$ python src/main.py --batch-size 128

License

Comments
  •  Coordinate Addition module & Routing

    Coordinate Addition module & Routing

    Hi, thanks for your codes of GapsGNN. And I have some questions about Coordinate Addition module and Routing.

    1. Do you use Coordinate Addition module in this codes?
    2. In /src/layers.py, line 137 : c_ij = torch.nn.functional.softmax(b_ij, dim=0) . At this time, b_ij.size(0) == 1, why use dim =0 ?

    Thanks again.

    opened by S-rz 4
  • Something about reshape

    Something about reshape

    Hi @benedekrozemberczki ! Thank you for your work!

    I have a question at line 61 and 62 of CapsGNN/src/capsgnn.py

    hidden_representations = torch.cat(tuple(hidden_representations)) hidden_representations = hidden_representations.view(1, self.args.gcn_layers, self.args.gcn_filters,-1)

    Why you directly reshape L*N,D to 1,L,D,N instead of using permutation after reshape, e.g

    hidden_representations = hidden_representations.view(1, self.args.gcn_layers, -1,self.args.gcn_filters).permute(0,1,3,2)

    Thank you for your help!

    opened by yanx27 4
  • Reproduce Issues

    Reproduce Issues

    Hi, thanks for your PyTorch codes of GapsGNN. I try to run the codes on NCI, DD, and other graph classification datasets, but it doesn't work (For example, training loss converges to 2.0, and test acc is about 50% on NCI1 after several iterations.) How should I do if I want to run these codes on NCI, DD and etc? Thanks again.

    opened by veophi 1
  • D&D dataset

    D&D dataset

    I notice some datasets in your paper such as D&D dataset. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by try-to-anything 1
  • Other datasets

    Other datasets

    I notice some datasets in your paper such as RE-M5K and RE-M12K. May I know how to obtain these datasets? The processed datasets would be appreciated. Thank you.

    opened by HongyangGao 1
  • Not able to install torch-scatter with torch 0.4.1

    Not able to install torch-scatter with torch 0.4.1

    Hello,

    Thanks for sharing the implementation.

    While I'm try to run your code I get some error for installing the environment. I have torch 0.4.1, but not able to install torch-scatter.Got the following error: fatal error: torch/extension.h: No such file or directory

    But I can successfully install them for torch 1.0.

    Is your code working for torch 1.0? Or how to install torch-scatter for torch 0.4.1?

    Details:

    $ pip list Package Version


    backcall 0.1.0
    certifi 2018.8.24
    .... torch 0.4.1.post2 torch-geometric 1.1.1
    torchfile 0.1.0
    torchvision 0.2.1
    tornado 5.1
    tqdm 4.31.1
    traitlets 4.3.2
    urllib3 1.23
    visdom 0.1.8.5
    vispy 0.5.3
    .... ....

    $pip install torch-scatter

    opened by jkuh626 1
  • how to repeat your expriments?

    how to repeat your expriments?

    Enumerating feature and target values.

    100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:00<00:00, 14754.82it/s]

    Training started.

    Epochs: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:05<00:00, 1.90it/s] CapsGNN (Loss=0.7279): 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1.92it/s]

    Scoring.

    100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [00:00<00:00, 128.47it/s]

    Accuracy: 0.3333

    Accuracy is too small

    opened by robotzheng 1
  • default input dir for graphs is

    default input dir for graphs is "input"

    The README mentions the default train and test graphs to be in dataset/train and dataset/test, whereas they are in input/train and input/test respectively. The param_parser.py has the correct default paths nevertheless.

    opened by Utkarsh87 0
Releases(v_0001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022