PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

Overview

DECOR-GAN

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri.

Paper | Oral video | GUI demo video

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021decor,
  title={DECOR-GAN: 3D Shape Detailization by Conditional Refinement},
  author={Zhiqin Chen and Vladimir G. Kim and Matthew Fisher and Noam Aigerman and Hao Zhang and Siddhartha Chaudhuri},
  journal={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Dependencies

Requirements:

  • Python 3.6 with numpy, h5py, scipy, sklearn and Cython
  • PyTorch 1.5 (other versions may also work)
  • PyMCubes (for marching cubes)
  • OpenCV-Python (for reading and writing images)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preparation.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Training

To train the network:

python main.py --data_style style_chair_64 --data_content content_chair_train --data_dir ./data/03001627/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 128 --train --gpu 0 --epoch 20
python main.py --data_style style_plane_32 --data_content content_plane_train --data_dir ./data/02691156/ --alpha 0.1 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_car_32 --data_content content_car_train --data_dir ./data/02958343/ --alpha 0.2 --beta 10.0 --input_size 64 --output_size 256 --train --gpu 0 --epoch 20
python main.py --data_style style_table_64 --data_content content_table_train --data_dir ./data/04379243/ --alpha 0.2 --beta 10.0 --input_size 16 --output_size 128 --train --gpu 0 --epoch 50
python main.py --data_style style_motor_16 --data_content content_motor_all_repeat20 --data_dir ./data/03790512/ --alpha 0.5 --beta 10.0 --input_size 64 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_laptop_32 --data_content content_laptop_all_repeat5 --data_dir ./data/03642806/ --alpha 0.2 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20
python main.py --data_style style_plant_20 --data_content content_plant_all_repeat8 --data_dir ./data/03593526_03991062/ --alpha 0.5 --beta 10.0 --input_size 32 --output_size 256 --train --asymmetry --gpu 0 --epoch 20

Note that style_chair_64 means the model will be trained with 64 detailed chairs. You can modify the list of detailed shapes in folder splits, such as style_chair_64.txt. You can also modify the list of content shapes in folder splits. The parameters input_size and output_size specify the resolutions of the input and output voxels. Valid settings are as follows:

Input resolution Output resolution Upsampling rate
64 256 x4
32 128 x4
32 256 x8
16 128 x8

GUI application

To launch UI for a pre-trained model, replace --data_content to the testing content shapes and replace --train with --ui.

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --ui --gpu 0

Testing

These are examples for testing a model trained with 32 detailed chairs. For others, please change the commands accordingly.

Rough qualitative testing

To output a few detailization results (the first 16 content shapes x 32 styles) and a T-SNE embedding of the latent space:

python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --test --gpu 0

The output images can be found in folder samples.

IOU, LP, Div

To test Strict-IOU, Loose-IOU, LP-IOU, Div-IOU, LP-F-score, Div-F-score:

python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvoxstyle --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepvox --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalvox --gpu 0

The first command prepares the patches in 64 detailed training shapes, thus --data_style is style_chair_64. Specifically, it removes duplicated patches in each detailed training shape and only keep unique patches for faster computation in the following testing procedure. The unique patches are written to folder unique_patches. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder unique_patches or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_IOU_mean.txt, result_LP_Div_Fscore_mean.txt, result_LP_Div_IOU_mean.txt ).

Cls-score

To test Cls-score:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimgreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepimg --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalimg --gpu 0

The first command prepares rendered views of all content shapes, thus --data_content is content_chair_all. The rendered views are written to folder render_real_for_eval. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the folder render_real_for_eval or make a symbolic link.

The second command runs the model and outputs rendered views of the detailization results, in folder render_fake_for_eval.

The third command evaluates the outputs. The results are written to folder eval_output ( result_Cls_score.txt ).

FID

To test FID-all and FID-style, you need to first train a classification model on shapeNet. You can use the provided pre-trained weights here (Clsshapenet_128.pth and Clsshapenet_256.pth for 1283 and 2563 inputs).

Backup links:

In case you need to train your own model, modify shapenet_dir in evalFID.py and run:

python main.py --prepFIDmodel --output_size 128 --gpu 0
python main.py --prepFIDmodel --output_size 256 --gpu 0

After you have the pre-trained classifier, use the following commands:

python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFIDreal --gpu 0
python main.py --data_style style_chair_32 --data_content content_chair_test --data_dir ./data/03001627/ --input_size 32 --output_size 128 --prepFID --gpu 0
python main.py --data_style style_chair_64 --data_content content_chair_all --data_dir ./data/03001627/ --input_size 32 --output_size 128 --evalFID --gpu 0

The first command computes the mean and sigma vectors for real shapes and writes to precomputed_real_mu_sigma_128_content_chair_all_num_style_16.hdf5. Note that if you are testing multiple models, you do not have to run the first command every time -- just copy the output hdf5 file or make a symbolic link.

The second command runs the model and outputs the detailization results, in folder output_for_FID.

The third command evaluates the outputs. The results are written to folder eval_output ( result_FID.txt ).

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | įŽ€äŊ“中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020