Provide baselines and evaluation metrics of the task: traffic flow prediction

Overview

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction.

Due to technical reasons, I did not fork their code.

Introduction

This repo provide the implementations of baselines in the field traffic flow prediction. Most of the code in this field is too out-of-date to run, so I use docker to save you from installing tedious frameworks and provide one-line command to run the whole models. Before running, make sure copy TaxiBJ dataset to the data folder. Check Out QuickStart, where I provide out-of-the-box tutorial for you to use this repo!

Install tedious frameworks with few lines of code

git clone https://github.com/pengzhangzhi/Benchmark-Traffic-flow-prediction-.git
cd Benchmark-Traffic-flow-prediction-
docker pull tensorflow/tensorflow:2.4.3-gpu
docker run -it tensorflow/tensorflow:2.4.3-gpu
pip install -r requirements.txt

Run Baselines

bash train_TaxiBJ.sh
bash train_TaxiNYC.sh

Repository structure

Each of the main folders is dedicated to a specific deep learning network. Some of them were taken and modified from other repositories associated with the source paper, while others are our original implementations. Here it is an exhaustive list:

  • ST-ResNet. Folder for [1]. The original source code is here.
  • MST3D. Folder with our original implementation of the model described in [2].
  • Pred-CNN. Folder for [3]. The original repository is here.
  • ST3DNet. Folder for [4]. The starting-point code can be found here.
  • STAR. Folder for [5]. Soure code was taken from here.
  • 3D-CLoST. Folder dedicated to a model created during another research at Università Bicocca.
  • STDN. Folder referring to [6]. This folder is actually a copy of this repository, since it was never used in our experimentes.
  • Autoencoder. Refer to paper: Listening to the city, attentively: A Spatio-TemporalAttention Boosted Autoencoder for the Short-Term Flow Prediction Problem.

The contents of these folders can be a little different from each other, accordingly to the structure of the source repositories. Nevertheless, in each of them there are all the codes used to create input flow volumes, training and testing the models for single step prediction, and to evaluate performance on multi step prediction and transfer learning experiments.

The remaining folders are:

  • baselines. Contains the code implementing Historical Average and ARIMA approaches to the traffic flow prediction problem.
  • data. Folder where source data should be put in.
  • helpers. Contains some helpers code used for data visualization or to get weather info through an external API.

References

[1] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.

[2] Chen, Cen, et al. "Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction." 2018 IEEE international conference on data mining (ICDM). IEEE, 2018.

[3] Xu, Ziru, et al. "PredCNN: Predictive Learning with Cascade Convolutions." IJCAI. 2018.

[4] Guo, Shengnan, et al. "Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting." IEEE Transactions on Intelligent Transportation Systems 20.10 (2019): 3913-3926.

[5] Wang, Hongnian, and Han Su. "STAR: A concise deep learning framework for citywide human mobility prediction." 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019.

[6] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

[7] Liu, Yang, et al. "Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction." IEEE Transactions on Intelligent Transportation Systems 21.11 (2019): 4798-4807.

[8] Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). 2018.

Owner
Zhangzhi Peng
On the way of science :-)
Zhangzhi Peng
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022