Densely Connected Search Space for More Flexible Neural Architecture Search (CVPR2020)

Related tags

Deep LearningDenseNAS
Overview

DenseNAS

The code of the CVPR2020 paper Densely Connected Search Space for More Flexible Neural Architecture Search.

Neural architecture search (NAS) has dramatically advanced the development of neural network design. We revisit the search space design in most previous NAS methods and find the number of blocks and the widths of blocks are set manually. However, block counts and block widths determine the network scale (depth and width) and make a great influence on both the accuracy and the model cost (FLOPs/latency).

We propose to search block counts and block widths by designing a densely connected search space, i.e., DenseNAS. The new search space is represented as a dense super network, which is built upon our designed routing blocks. In the super network, routing blocks are densely connected and we search for the best path between them to derive the final architecture. We further propose a chained cost estimation algorithm to approximate the model cost during the search. Both the accuracy and model cost are optimized in DenseNAS. search_space

Updates

  • 2020.6 The search code is released, including both MobileNetV2- and ResNet- based search space.

Requirements

  • pytorch >= 1.0.1
  • python >= 3.6

Search

  1. Prepare the image set for search which contains 100 classes of the original ImageNet dataset. And 20% images are used as the validation set and 80% are used as the training set.

    1). Generate the split list of the image data.
    python dataset/mk_split_img_list.py --image_path 'the path of your ImageNet data' --output_path 'the path to output the list file'

    2). Use the image list obtained above to make the lmdb file.
    python dataset/img2lmdb.py --image_path 'the path of your ImageNet data' --list_path 'the path of your image list generated above' --output_path 'the path to output the lmdb file' --split 'split folder (train/val)'

  2. Build the latency lookup table (lut) of the search space using the following script or directly use the ones provided in ./latency_list/.
    python -m run_apis.latency_measure --save 'output path' --input_size 'the input image size' --meas_times 'the times of op measurement' --list_name 'the name of the output lut' --device 'gpu or cpu' --config 'the path of the yaml config'

  3. Search for the architectures. (We perform the search process on 4 32G V100 GPUs.)
    For MobileNetV2 search:
    python -m run_apis.search --data_path 'the path of the split dataset' --config configs/imagenet_search_cfg_mbv2.yaml
    For ResNet search:
    python -m run_apis.search --data_path 'the path of the split dataset' --config configs/imagenet_search_cfg_resnet.yaml

Train

  1. (Optional) We pack the ImageNet data as the lmdb file for faster IO. The lmdb files can be made as follows. If you don't want to use lmdb data, just set __C.data.train_data_type='img' in the training config file imagenet_train_cfg.py.

    1). Generate the list of the image data.
    python dataset/mk_img_list.py --image_path 'the path of your image data' --output_path 'the path to output the list file'

    2). Use the image list obtained above to make the lmdb file.
    python dataset/img2lmdb.py --image_path 'the path of your image data' --list_path 'the path of your image list' --output_path 'the path to output the lmdb file' --split 'split folder (train/val)'

  2. Train the searched model with the following script by assigning __C.net_config with the architecture obtained in the above search process. You can also train your customized model by redefine the variable model in retrain.py.
    python -m run_apis.retrain --data_path 'The path of ImageNet data' --load_path 'The path you put the net_config of the model'

Evaluate

  1. Download the related files of the pretrained model and put net_config and weights.pt into the model_path
  2. python -m run_apis.validation --data_path 'The path of ImageNet data' --load_path 'The path you put the pre-trained model'

Results

For experiments on the MobileNetV2-based search space, DenseNAS achieves 75.3% top-1 accuracy on ImageNet with only 361MB FLOPs and 17.9ms latency on a single TITAN-XP. The larger model searched by DenseNAS achieves 76.1% accuracy with only 479M FLOPs. DenseNAS further promotes the ImageNet classification accuracies of ResNet-18, -34 and -50-B by 1.5%, 0.5% and 0.3% with 200M, 600M and 680M FLOPs reduction respectively.

The comparison of model performance on ImageNet under the MobileNetV2-based search spaces.

The comparison of model performance on ImageNet under the ResNet-based search spaces.

Our pre-trained models can be downloaded in the following links. The complete list of the models can be found in DenseNAS_modelzoo.

Model FLOPs Latency Top-1(%)
DenseNAS-Large 479M 28.9ms 76.1
DenseNAS-A 251M 13.6ms 73.1
DenseNAS-B 314M 15.4ms 74.6
DenseNAS-C 361M 17.9ms 75.3
DenseNAS-R1 1.61B 12.0ms 73.5
DenseNAS-R2 3.06B 22.2ms 75.8
DenseNAS-R3 3.41B 41.7ms 78.0

archs

Citation

If you find this repository/work helpful in your research, welcome to cite it.

@inproceedings{fang2019densely,
  title={Densely connected search space for more flexible neural architecture search},
  author={Fang, Jiemin and Sun, Yuzhu and Zhang, Qian and Li, Yuan and Liu, Wenyu and Wang, Xinggang},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022