High performance distributed framework for training deep learning recommendation models based on PyTorch.

Overview


tutorials Documentation Status PyPI version Docker Pulls license

PERSIA (Parallel rEcommendation tRaining System with hybrId Acceleration) is developed by AI [email protected] Technology, collaborating with ETH. It is a PyTorch-based (the first public one to our best knowledge) system for training large scale deep learning recommendation models on commodity hardwares. It is capable of training recommendation models with up to 100 trillion parameters. To the best of our knowledge, this is the largest model size in recommendation systems so far. Empirical study on public datasets indicate PERSIA's significant advantage over several other existing training systems in recommendation [1]. Its efficiency and robustness have also been validated by multiple applications with 100 million level DAU at Kuaishou.

Disclaimer: The program is usable and has served several important businesses. However, the official English documentation and tutorials are still under heavy construction (there are some materials on the tutorials website, but they are pretty raw). We encourage adventurers to try out PERSIA and contribute!

News

  • AI Engines in the "Short-video" Era: Eating 100 Trillion Parameters, Invited talk, Facebook, 2021.
  • 单机训练速度提升 640 倍!独家解读快手商业广告模型 GPU 训练平台 PERSIA (In Chinese. Title: 640x Faster GPU Based Learning System for Ad Recommendation)
  • 创新、平衡与大格局:快手商业化的慢与快 (In Chinese. Title: Innovation, Balance, and Big Picture: The Speed of Kwai Commercialization)

Links

Discussion

Feel free to join our Telegram Group for discussion!

References

  1. Xiangru Lian, Binhang Yuan, Xuefeng Zhu, Yulong Wang, Yongjun He, Honghuan Wu, Lei Sun, Haodong Lyu, Chengjun Liu, Xing Dong, Yiqiao Liao, Mingnan Luo, Congfei Zhang, Jingru Xie, Haonan Li, Lei Chen, Renjie Huang, Jianying Lin, Chengchun Shu, Xuezhong Qiu, Zhishan Liu, Dongying Kong, Lei Yuan, Hai Yu, Sen Yang, Ce Zhang, & Ji Liu. (2021). Persia: A Hybrid System Scaling Deep Learning Based Recommenders up to 100 Trillion Parameters.

  2. Ji Liu & Ce Zhang. (2021). Distributed Learning Systems with First-order Methods.

License

This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.

SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022