Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Overview

VQGAN-CLIP Overview

A repo for running VQGAN+CLIP locally. This started out as a Katherine Crowson VQGAN+CLIP derived Google colab notebook.

Original notebook: Open In Colab

Some example images:

Environment:

  • Tested on Ubuntu 20.04
  • GPU: Nvidia RTX 3090
  • Typical VRAM requirements:
    • 24 GB for a 900x900 image
    • 10 GB for a 512x512 image
    • 8 GB for a 380x380 image

Still a work in progress - I've not actually tested everything yet :)

Set up

Example set up using Anaconda to create a virtual Python environment with the prerequisites:

conda create --name vqgan python=3.9
conda activate vqgan

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install ftfy regex tqdm omegaconf pytorch-lightning IPython kornia imageio imageio-ffmpeg einops 

git clone https://github.com/openai/CLIP
git clone https://github.com/CompVis/taming-transformers.git

You will also need at least 1 VQGAN pretrained model. E.g.

mkdir checkpoints
curl -L -o checkpoints/vqgan_imagenet_f16_16384.yaml -C - 'http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.yaml' #ImageNet 16384
curl -L -o checkpoints/vqgan_imagenet_f16_16384.ckpt -C - 'http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.ckpt' #ImageNet 16384

By default, the model .yaml and .ckpt files are expected in the checkpoints directory. See https://github.com/CompVis/taming-transformers for more information on datasets and models.

Run

To generate images from text, specify your text prompt as shown in the example below:

python generate.py -p "A painting of an apple in a fruit bowl"

Multiple prompts

Text and image prompts can be split using the pipe symbol in order to allow multiple prompts. For example:

python generate.py -p "A painting of an apple in a fruit bowl | psychedelic | surreal | weird"

Image prompts can be split in the same way. For example:

python generate.py -p "A picture of a bedroom with a portrait of Van Gogh" -ip "samples/VanGogh.jpg | samples/Bedroom.png"

"Style Transfer"

An input image with style text and a low number of iterations can be used create a sort of "style transfer" effect. For example:

python generate.py -p "A painting in the style of Picasso" -ii samples/VanGogh.jpg -i 80 -se 10 -opt AdamW -lr 0.25
Output Style
Picasso
Sketch
Psychedelic

Feedback example

By feeding back the generated images and making slight changes, some interesting effects can be created.

The example zoom.sh shows this by applying a zoom and rotate to generated images, before feeding them back in again. To use zoom.sh, specifying a text prompt, output filename and number of frames. E.g.

./zoom.sh "A painting of a red telephone box spinning through a time vortex" Telephone.png 150

Random text example

Use random.sh to make a batch of images from random text. Edit the text and number of generated images to your taste!

./random.sh

Advanced options

To view the available options, use "-h".

python generate.py -h
usage: generate.py [-h] [-p PROMPTS] [-o OUTPUT] [-i MAX_ITERATIONS] [-ip IMAGE_PROMPTS]
[-nps [NOISE_PROMPT_SEEDS ...]] [-npw [NOISE_PROMPT_WEIGHTS ...]] [-s SIZE SIZE]
[-ii INIT_IMAGE] [-iw INIT_WEIGHT] [-m CLIP_MODEL] [-conf VQGAN_CONFIG]
[-ckpt VQGAN_CHECKPOINT] [-lr STEP_SIZE] [-cuts CUTN] [-cutp CUT_POW] [-se DISPLAY_FREQ]
[-sd SEED] [-opt OPTIMISER]
optional arguments:
  -h, --help            show this help message and exit
  -p PROMPTS, --prompts PROMPTS
                        Text prompts
  -o OUTPUT, --output OUTPUT
                        Number of iterations
  -i MAX_ITERATIONS, --iterations MAX_ITERATIONS
                        Number of iterations
  -ip IMAGE_PROMPTS, --image_prompts IMAGE_PROMPTS
                        Image prompts / target image
  -nps [NOISE_PROMPT_SEEDS ...], --noise_prompt_seeds [NOISE_PROMPT_SEEDS ...]
                        Noise prompt seeds
  -npw [NOISE_PROMPT_WEIGHTS ...], --noise_prompt_weights [NOISE_PROMPT_WEIGHTS ...]
                        Noise prompt weights
  -s SIZE SIZE, --size SIZE SIZE
                        Image size (width height)
  -ii INIT_IMAGE, --init_image INIT_IMAGE
                        Initial image
  -iw INIT_WEIGHT, --init_weight INIT_WEIGHT
                        Initial image weight
  -m CLIP_MODEL, --clip_model CLIP_MODEL
                        CLIP model
  -conf VQGAN_CONFIG, --vqgan_config VQGAN_CONFIG
                        VQGAN config
  -ckpt VQGAN_CHECKPOINT, --vqgan_checkpoint VQGAN_CHECKPOINT
                        VQGAN checkpoint
  -lr STEP_SIZE, --learning_rate STEP_SIZE
                        Learning rate
  -cuts CUTN, --num_cuts CUTN
                        Number of cuts
  -cutp CUT_POW, --cut_power CUT_POW
                        Cut power
  -se DISPLAY_FREQ, --save_every DISPLAY_FREQ
                        Save image iterations
  -sd SEED, --seed SEED
                        Seed
  -opt OPTIMISER, --optimiser OPTIMISER
                        Optimiser (Adam, AdamW, Adagrad, Adamax)

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Katherine Crowson - https://github.com/crowsonkb

Public Domain images from Open Access Images at the Art Institute of Chicago - https://www.artic.edu/open-access/open-access-images

Owner
Nerdy Rodent
Just a nerdy rodent. I do arty stuff with computers.
Nerdy Rodent
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023