Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

Related tags

Deep LearningOG-SPACE
Overview

OG-SPACE

Introduction

Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framework to simulate the spatial evolution of cancer cells and the experimental procedure of bulk and Single-cell DNA-seq experiments. OG-SPACE relies on an optimized Gillespie algorithm for a large number of cells able to handle a variety of Birth-Death processes on a lattice and an efficient procedure to reconstruct the phylogenetic tree and the genotype of the sampled cells.

REQUIRED SOFTWARE AND PACKAGE

  • R (tested on version 4.0) https://cran.r-project.org
  • The following R libraries:
    • igraph
    • gtools
    • ggplot2
    • gridExtra
    • reshape2
    • stringi
    • stringr
    • shiny
    • manipulateWidget
    • rgl

RUN OG-SPACE

  • Download the folder OG-SPACE.
  • use the following command "Rscript.exe my_path\Run_OG-SPACE.R". "my_path" is the path to the folder containing the OG-SPACE scripts.
  • When the pop-up window appears, select the file "Run_OG-SPACE.R" in the working folder. Alternatively, you can launch OG-SPACE, with software like RStudio. In this case, simply run the script "Run_OG-SPACE.R" and when the pop-up window appears, select the file "Run_OG-SPACE.R" in the working folder.

PARAMETERS OF OG-SPACE

Most of the parameters of OG-SPACE could be modified by editing with a text editor the file "input/Parameters.txt". Here a brief description of each parameters.

  • simulate_process three values "contact","voter" and "h_voter". This parameter selects which model simulate with OG-SPACE.
  • generate_lattice = if 1 OG-SPACE generate a regular lattice for the dynamics. If 0 OG-SPACE takes an Igraph object named "g.Rdata" in the folder "input".
  • dimension = an integer number, the dimensionality of the generated regular lattice.
  • N_e = an integer number, number of elements of the edge of the generated regular lattice.
  • dist_interaction = an integer number, the distance of interaction between nodes of the lattice.
  • simulate_experiments = if 1 OG-SPACE generates bulk and sc-DNA seq experiments data. If 0, no.
  • do_bulk_exp = if 1 OG-SPACE generates bulk seq experiment data . If 0, no
  • do_sc_exp = if 1 OG-SPACE generates sc-DNA seq experiments data . If 0, no
  • to_do_plots_of_trees = if 1 OG-SPACE generates the plots of the trees . If 0, no.
  • do_pop_dyn_plot = if 1 OG-SPACE generates the plots of the dynamics . If 0, no.
  • do_spatial_dyn_plot = if 1 OG-SPACE generates the plots of the spatial dynamics . If 0, no.
  • do_geneaology_tree = if 1 OG-SPACE generates the plots of the cell genealogy trees . If 0, no.
  • do_phylo_tree = if 1 OG-SPACE generate the plots of the phylogenetic trees . If 0 no.
  • size_of_points_lattice = an integer number, size of the points in the plot of spatial dynamics.
  • size_of_points_trees = an integer number, size of the points in the plot of trees.
  • set_seed = the random seed of the computation.
  • Tmax = maximum time of the computation [arb. units] .
  • alpha = birth rate of the first subpopulation [1/time].
  • beta = death rate of the first subpopulation [1/time].
  • driv_mut = probability of developing a driver mutation (between 0 and 1).
  • driv_average_advantadge = average birth rate advantage per driver [1/time].
  • random_start = if 1 OG-SPACE select randomly the spatial position of the first cell . If 0 it use the variable "node_to_start" .
  • node_to_start = if random_start=0 OG-SPACE, the variable should be setted to the label of the node of starting.
  • N_starting = Number of starting cells. Works only with random_start=1.
  • n_events_saving = integer number, frequency of the number of events when saving the dynamics for the plot.
  • do_random_sampling = if 2 OG-SPACE samples randomly the cells.
  • -n_sample = integer number of the number of sampled cell. Ignored if do_random_sampling = 0
  • dist_sampling = The radius of the spatial sampled region. Ignored if do_random_sampling = 1
  • genomic_seq_length = number of bases of the genome under study.
  • neutral_mut_rate = neutral mutational rate per base [1/time].
  • n_time_sample = integer number, number of the plots of the dynamics.
  • detected_vaf_thr = VAF threshold. If a VAF is lesser than this number is considered not observed.
  • sequencing_depth_bulk = integer number, the sequencing depth of bulk sequencing.
  • prob_reads_bulk = number between 0 and 1, 1- the prob of a false negative in bulk read
  • mean_coverage_cell_sc = integer number, mean number of read per cells
  • fn_rate_sc_exp = number between 0 and 1, 1- the prob of a false negative in sc read
  • fp_rate_sc_exp = number between 0 and 1, 1- the prob of a false positive in sc read
  • minimum_reads_for_cell = integer number, the minimum number of reads per cell in order to call a mutation
  • detection_thr_sc = ratio of successful reads necessary to call a mutation

OUTPUTS OF OG-SPACE

In the folder "output", you will find all the .txt data files of the output. Note that the trees are returned as edge list matrices. The files will contain:

  • The state of the lattice, with the position of each cell.
  • The Ground Truth (GT) genotype of the sampled cells.
  • The GT Variant Allele Frequency (VAF) spectrum of the sampled cells.
  • The GT genealogy tree of the sampled cells.
  • The GT phylogenetic tree of the sampled cells.
  • The mutational tree of the driver mutations appeared during the simulation of the dynamics.
  • The genotype of the sampled cells after simulating a sc-DNA-seq experiment (if required).
  • The VAF spectrum of the sampled cells after simulating a bulk DNA-seq experiment (if required).

In the folder "output/plots", you will find all required plots.

Owner
Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca)
The github organization of the DCB group of the DISCo, Università degli Studi di Milano Bicocca
Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca)
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023