Privacy-Preserving Portrait Matting [ACM MM-21]

Overview

Privacy-Preserving Portrait Matting [ACM MM-21]

This is the official repository of the paper Privacy-Preserving Portrait Matting.

Jizhizi Li, Sihan Ma, Jing Zhang, and Dacheng Tao

Introduction | PPT and P3M-10k | P3M-Net | Benchmark | Results | Train and Test | Inference code | Statement


📮 News

[2021-11-21]: Publish the dataset P3M-10k (the largest privacy-preserving portrait matting dataset, contains 10421 high-resolution real-world face-blurred portrait images and the manually labeled alpha mattes.), the train code and the test code. The dataset P3M-10k can be accessed from the following link, please make sure that you have read and agreed to the agreement. The train code and test code can be viewed from this code-base page.

[2021-12-06]: Publish the face mask of the training set and P3M-500-P validation set of P3M-10k dataset.

Dataset

Dataset Link
(Google Drive)

Dataset Link
(Baidu Wangpan 百度网盘)

Dataset Release Agreement
P3M-10k Link Link (pw: fgmc) Agreement (MIT License)
P3M-10k facemask (optional) Link Link (pw: f772) Agreement (MIT License)

[2021-11-20]: Publish the inference code and the pretrained model (Google Drive | Baidu Wangpan (pw: 2308)) that can be used to test on your own privacy-preserving or normal portrait images. Some test results on P3M-10k can be viewed from this demo page.

Introduction

Recently, there has been an increasing concern about the privacy issue raised by using personally identifiable information in machine learning. However, previous portrait matting methods were all based on identifiable portrait images.

To fill the gap, we present P3M-10k in this paper, which is the first large-scale anonymized benchmark for Privacy-Preserving Portrait Matting. P3M-10k consists of 10,000 high-resolution face-blurred portrait images along with high-quality alpha mattes. We systematically evaluate both trimap-free and trimap-based matting methods on P3M-10k and find that existing matting methods show different generalization capabilities when following the Privacy-Preserving Training (PPT) setting, 𝑖.𝑒., training on face-blurred images and testing on arbitrary images.

To devise a better trimap-free portrait matting model, we propose P3M-Net, which leverages the power of a unified framework for both semantic perception and detail matting, and specifically emphasizes the interaction between them and the encoder to facilitate the matting process. Extensive experiments on P3M-10k demonstrate that P3M-Net outperforms the state-of-the-art methods in terms of both objective metrics and subjective visual quality. Besides, it shows good generalization capacity under the PPT setting, confirming the value of P3M-10k for facilitating future research and enabling potential real-world applications.

PPT Setting and P3M-10k Dataset

PPT Setting: Due to the privacy concern, we propose the Privacy-Preserving Training (PPT) setting in portrait matting, 𝑖.𝑒., training on privacy-preserved images (𝑒.𝑔., processed by face obfuscation) and testing on arbitraty images with or without privacy content. As an initial step towards privacy-preserving portrait matting problem, we only define the identifiable faces in frontal and some profile portrait images as the private content in this work.

P3M-10k Dataset: To further explore the effect of PPT setting, we establish the first large-scale privacy-preserving portrait matting benchmark named P3M-10k. It contains 10,000 annonymized high-resolution portrait images by face obfuscation along with high-quality ground truth alpha mattes. Specifically, we carefully collect, filter, and annotate about 10,000 high-resolution images from the Internet with free use license. There are 9,421 images in the training set and 500 images in the test set, denoted as P3M-500-P. In addition, we also collect and annotate another 500 public celebrity images from the Internet without face obfuscation, to evaluate the performance of matting models under the PPT setting on normal portrait images, denoted as P3M-500-NP. We show some examples as below, where (a) is from the training set, (b) is from P3M-500-P, and (c) is from P3M-500-NP.

P3M-10k and the facemask are now published!! You can get access to it from the following links, please make sure that you have read and agreed to the agreement. Note that the facemask is not used in our work. So it's optional to download it.

Dataset

Dataset Link
(Google Drive)

Dataset Link
(Baidu Wangpan 百度网盘)

Dataset Release Agreement
P3M-10k Link Link (pw: fgmc) Agreement (MIT License)
P3M-10k facemask (optional) Link Link (pw: f772) Agreement (MIT License)

P3M-Net

Our proposed P3M-Net consists of four parts

  • A Multi-task Framework: To enable benefits from explicitly modeling both semantic segmentation and detail matting tasks and jointly optimizing for trimap-free matting, we follow [1] and [2], adopt a multi-task framework based on a modified version of ResNet-34, the model pretrained on ImageNet will be listed as follows;

  • TFI: Tripartite-Feature Integration: TFI module is used in each matting decoder block to model the interaction between encoder, segmentation decoder, and the matting decoder. TFI has three inputs, the feature map of the previous matting decoder block, the feature map from the same level semantic decoder block, and the feature map from the symmetrical encoder block. TFI passes them through a projection layer, concats the outputs and feeds into a convolutional block to generate the output feature;

  • sBFI: Shallow Bipartite-Feature Integration: sBFI module is used to model the interaction between the encoder and matting decoder. sBFI adopts the feature map from the first encoder block as a guidance to refine the output feature map from previous matting decoder block since shallow layers in the encoder contain many details and local structural information;

  • dBFI: Deep Bipartite-Feature Integration: dBFI module is used to model the interaction between the encoder and segmentation decoder. dBFI adopts the feature map from the last encoder block as a guidance for the semantic decoder since it contains abundant global semantics. Specifically, dBFI fuses the feature map from the last encoder with the ones from semantic decoder to improve the feature representation ability for the high-level semantic segmentation task.

Here we provide the model we pretrained on P3M-10k and the backbone we pretrained on ImageNet.

Model Pretrained Backbone on ImageNet Pretrained P3M-NET on P3M-10k
Google Drive Link Link

Baidu Wangpan
(百度网盘)

Link
(pw: 2v1t)

Link
(pw: 2308)

Benchmark

A systematic evaluation of the existing trimap-based and trimap-free matting methods on P3M-10k is conducted to investigate the impact of the privacy-preserving training (PPT) setting on different matting models and gain some useful insights. Part of the results are shown as below. Please refer to the paper for full tables.

In the following tables, "B" denotes the blurred images, and "N" denotes the normal images. "B:N" denotes training on blurred images while testing on normal images, vice versa.

Table 1. Results of trimap-based deep learning methods on P3M-500-P.
Setting B:B B:N N:B N:N
Method SAD MSE SAD MSE SAD MSE SAD MSE
DIM 4.8906 0.0115 4.8940 0.0116 4.8050 0.0116 4.7941 0.0116
AlphaGAN 5.2669 0.0112 5.2367 0.0112 5.7060 0.0120 5.6696 0.0119
GCA 4.3593 0.0088 4.3469 0.0089 4.4068 0.0089 4.4002 0.0089
IndexNet 5.1959 0.0156 5.2188 0.0158 5.8267 0.0202 5.8509 0.0204
FBA 4.1330 0.0088 4.1267 0.0088 4.1666 0.0086 4.1544 0.0086
Table 2. Results of trimap-free methods on P3M-500-P.
Setting B:B B:N N:B N:N
Method SAD MSE SAD MSE SAD MSE SAD MSE
SHM 21.56 0.0100 24.33 0.0116 23.91 0.0115 17.13 0.0075
LF 42.95 0.0191 30.84 0.0129 41.01 0.0174 31.22 0.0123
HATT 25.99 0.0054 26.5 0.0055 35.02 0.0103 22.93 0.0040
GFM 13.20 0.0050 13.08 0.0050 13.54 0.0048 10.73 0.0033
BASIC 15.13 0.0058 15.52 0.0060 24.38 0.0109 14.52 0.0054
P3M-Net (Ours) 8.73 0.0026 9.22 0.0028 11.22 0.0040 9.06 0.0028

Results

We test our network on our proposed P3M-500-P and P3M-500-NP and compare with previous SOTA methods, we list the results as below. More results on P3M-10k test set can be found here.

Inference Code - How to Test on Your Images

Here we provide the procedure of testing on sample images by our pretrained model:

  1. Setup environment following this instruction page;

  2. Insert the path REPOSITORY_ROOT_PATH in the file core/config.py;

  3. Download the pretrained P3M-Net model from here (Google Drive|Baidu Wangpan (pw: 2308)) and unzip to the folder models/pretrained/;

  4. Save your sample images in folder samples/original/.;

  5. Setup parameters in the file scripts/test_samples.sh and run by:

    chmod +x scripts/test_samples.sh

    scripts/test_samples.sh;

  6. The results of alpha matte and transparent color image will be saved in folder samples/result_alpha/. and samples/result_color/..

We show some sample images, the predicted alpha mattes, and their transparent results as below. We use the pretrained model from section Network with Hybrid (1 & 1/2) test strategy.

Statement

If you are interested in our work, please consider citing the following:

@inproceedings{10.1145/3474085.3475512,
author = {Li, Jizhizi and Ma, Sihan and Zhang, Jing and Tao, Dacheng},
title = {Privacy-Preserving Portrait Matting},
year = {2021},
isbn = {9781450386517},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3474085.3475512},
doi = {10.1145/3474085.3475512},
booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
pages = {3501–3509},
numpages = {9},
keywords = {trimap, benchmark, portrait matting, deep learning, semantic segmentation, privacy-preserving},
location = {Virtual Event, China},
series = {MM '21}
}

This project is under MIT licence.

For further questions, please contact Jizhizi Li at [email protected] or Sihan Ma at [email protected].

Relevant Projects

[1] Bridging Composite and Real: Towards End-to-end Deep Image Matting, IJCV, 2021 | Paper | Github
     Jizhizi Li, Jing Zhang, Stephen J. Maybank, Dacheng Tao

[2] Deep Automatic Natural Image Matting, IJCAI, 2021 | Paper | Github
     Jizhizi Li, Jing Zhang, and Dacheng Tao

Owner
Jizhizi_Li
Ph.D. student at the University of Sydney - Artificial Intelligence
Jizhizi_Li
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022