A Simple and Versatile Framework for Object Detection and Instance Recognition

Overview

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition

Major Features

  • FP16 training for memory saving and up to 2.5X acceleration
  • Highly scalable distributed training available out of box
  • Full coverage of state-of-the-art models including FasterRCNN, MaskRCNN, CascadeRCNN, RetinaNet, DCNv1/v2, TridentNet, NASFPN , EfficientNet, and Knowledge Distillation
  • Extensive feature set including large batch BN, loss synchronization, automatic BN fusion, soft NMS, multi-scale train/test
  • Modular design for coding-free exploration of new experiment settings
  • Extensive documentations including annotated config, Fintuning Guide

Recent Updates

  • Add RPN test (2019.05.28)
  • Add NASFPN (2019.06.04)
  • Add new ResNetV1b baselines from GluonCV (2019.06.07)
  • Add Cascade R-CNN with FPN backbone (2019.06.11)
  • Speed up FPN up to 70% (2019.06.16)
  • Update NASFPN to include larger models (2019.07.01)
  • Automatic BN fusion for fixed BN training, saving up to 50% GPU memory (2019.07.04)
  • Speed up MaskRCNN by 80% (2019.07.23)
  • Update MaskRCNN baselines (2019.07.25)
  • Add EfficientNet and DCN (2019.08.06)
  • Add python wheel for easy local installation (2019.08.20)
  • Add FitNet based Knowledge Distill (2019.08.27)
  • Add SE and train from scratch (2019.08.30)
  • Add a lot of docs (2019.09.03)
  • Add support for INT8 training(contributed by Xiaotao Chen & Jingqiu Zhou) (2019.10.24)
  • Add support for FCOS(contributed by Zhen Wei) (2019.11)
  • Add support for Mask Scoring RCNN(contributed by Zehui Chen) (2019.12)
  • Add support for RepPoints(contributed by Bo Ke) (2020.02)
  • Add support for FreeAnchor (2020.03)
  • Add support for Feature Pyramid Grids & PAFPN (2020.06)
  • Add support for CrowdHuman Dataset (2020.06)
  • Add support for Double Pred (2020.06)
  • Add support for SEPC(contributed by Qiaofei Li) (2020.07)

Setup

All-in-one Script

We provide a setup script for install simpledet and preppare the coco dataset. If you use this script, you can skip to the Quick Start.

Install

We provide a conda installation here for Debian/Ubuntu system. To use a pre-built docker or singularity images, please refer to INSTALL.md for more information.

# install dependency
sudo apt update && sudo apt install -y git wget make python3-dev libglib2.0-0 libsm6 libxext6 libxrender-dev unzip

# create conda env
conda create -n simpledet python=3.7
conda activate simpledet

# fetch CUDA environment
conda install cudatoolkit=10.1

# install python dependency
pip install 'matplotlib<3.1' opencv-python pytz

# download and intall pre-built wheel for CUDA 10.1
pip install https://1dv.aflat.top/mxnet_cu101-1.6.0b20191214-py2.py3-none-manylinux1_x86_64.whl

# install pycocotools
pip install 'git+https://github.com/RogerChern/cocoapi.git#subdirectory=PythonAPI'

# install mxnext, a wrapper around MXNet symbolic API
pip install 'git+https://github.com/RogerChern/mxnext#egg=mxnext'

# get simpledet
git clone https://github.com/tusimple/simpledet
cd simpledet
make

# test simpledet installation
mkdir -p experiments/faster_r50v1_fpn_1x
python detection_infer_speed.py --config config/faster_r50v1_fpn_1x.py --shape 800 1333

If the last line execute successfully, the average running speed of Faster R-CNN R-50 FPN will be reported. And you have successfuly setup SimpleDet. Now you can head up to the next section to prepare your dataset.

Preparing Data

We provide a step by step preparation for the COCO dataset below.

cd simpledet

# make data dir
mkdir -p data/coco/images data/src

# skip this if you have the zip files
wget -c http://images.cocodataset.org/zips/train2017.zip -O data/src/train2017.zip
wget -c http://images.cocodataset.org/zips/val2017.zip -O data/src/val2017.zip
wget -c http://images.cocodataset.org/zips/test2017.zip -O data/src/test2017.zip
wget -c http://images.cocodataset.org/annotations/annotations_trainval2017.zip -O data/src/annotations_trainval2017.zip
wget -c http://images.cocodataset.org/annotations/image_info_test2017.zip -O data/src/image_info_test2017.zip

unzip data/src/train2017.zip -d data/coco/images
unzip data/src/val2017.zip -d data/coco/images
unzip data/src/test2017.zip -d data/coco/images
unzip data/src/annotations_trainval2017.zip -d data/coco
unzip data/src/image_info_test2017.zip -d data/coco

python utils/create_coco_roidb.py --dataset coco --dataset-split train2017
python utils/create_coco_roidb.py --dataset coco --dataset-split val2017
python utils/create_coco_roidb.py --dataset coco --dataset-split test-dev2017

For other datasets or your own data, please check DATASET.md for more details.

Quick Start

# train
python detection_train.py --config config/faster_r50v1_fpn_1x.py

# test
python detection_test.py --config config/faster_r50v1_fpn_1x.py

Finetune

Please check FINTUNE.md

Model Zoo

Please refer to MODEL_ZOO.md for available models

Distributed Training

Please refer to DISTRIBUTED.md

Project Organization

Code Structure

detection_train.py
detection_test.py
config/
    detection_config.py
core/
    detection_input.py
    detection_metric.py
    detection_module.py
models/
    FPN/
    tridentnet/
    maskrcnn/
    cascade_rcnn/
    retinanet/
mxnext/
symbol/
    builder.py

Config

Everything is configurable from the config file, all the changes should be out of source.

Experiments

One experiment is a directory in experiments folder with the same name as the config file.

E.g. r50_fixbn_1x.py is the name of a config file

config/
    r50_fixbn_1x.py
experiments/
    r50_fixbn_1x/
        checkpoint.params
        log.txt
        coco_minival2014_result.json

Models

The models directory contains SOTA models implemented in SimpletDet.

How is Faster R-CNN built

Faster R-CNN

Simpledet supports many popular detection methods and here we take Faster R-CNN as a typical example to show how a detector is built.

  • Preprocessing. The preprocessing methods of the detector is implemented through DetectionAugmentation.
    • Image/bbox-related preprocessing, such as Norm2DImage and Resize2DImageBbox.
    • Anchor generator AnchorTarget2D, which generates anchors and corresponding anchor targets for training RPN.
  • Network Structure. The training and testing symbols of Faster-RCNN detector is defined in FasterRcnn. The key components are listed as follow:
    • Backbone. Backbone provides interfaces to build backbone networks, e.g. ResNet and ResNext.
    • Neck. Neck provides interfaces to build complementary feature extraction layers for backbone networks, e.g. FPNNeck builds Top-down pathway for Feature Pyramid Network.
    • RPN head. RpnHead aims to build classification and regression layers to generate proposal outputs for RPN. Meanwhile, it also provides interplace to generate sampled proposals for the subsequent R-CNN.
    • Roi Extractor. RoiExtractor extracts features for each roi (proposal) based on the R-CNN features generated by Backbone and Neck.
    • Bounding Box Head. BboxHead builds the R-CNN layers for proposal refinement.

How to build a custom detector

The flexibility of simpledet framework makes it easy to build different detectors. We take TridentNet as an example to demonstrate how to build a custom detector simply based on the Faster R-CNN framework.

  • Preprocessing. The additional processing methods could be provided accordingly by inheriting from DetectionAugmentation.
    • In TridentNet, a new TridentAnchorTarget2D is implemented to generate anchors for multiple branches and filter anchors for scale-aware training scheme.
  • Network Structure. The new network structure could be constructed easily for a custom detector by modifying some required components as needed and
    • For TridentNet, we build trident blocks in the Backbone according to the descriptions in the paper. We also provide a TridentRpnHead to generate filtered proposals in RPN to implement the scale-aware scheme. Other components are shared the same with original Faster-RCNN.

Contributors

Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Naiyan Wang, Xiaotao Chen, Jingqiu Zhou, Zhen Wei, Zehui Chen, Zhaoxiang Zhang, Bo Ke

License and Citation

This project is release under the Apache 2.0 license for non-commercial usage. For commercial usage, please contact us for another license.

If you find our project helpful, please consider cite our tech report.

@article{JMLR:v20:19-205,
  author  = {Yuntao Chen and Chenxia Han and Yanghao Li and Zehao Huang and Yi Jiang and Naiyan Wang and Zhaoxiang Zhang},
  title   = {SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance Recognition},
  journal = {Journal of Machine Learning Research},
  year    = {2019},
  volume  = {20},
  number  = {156},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v20/19-205.html}
}
Owner
TuSimple
The Future of Trucking
TuSimple
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

Shichao Li 138 Dec 09, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022