This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Related tags

Deep LearningCQFS
Overview

Collaborative-driven Quantum Feature Selection

This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websites of our quantum computing group and of our recommender systems group for more information on our teams and works. This repository contains the source code for the article "Feature Selection for Recommender Systems with Quantum Computing".

Here we explain how to install dependencies, setup the connection to D-Wave Leap quantum cloud services and how to run experiments included in this repository.

Installation

NOTE: This repository requires Python 3.7

It is suggested to install all the required packages into a new Python environment. So, after repository checkout, enter the repository folder and run the following commands to create a new environment:

If you're using virtualenv:

virtualenv -p python3 cqfs
source cqfs/bin/activate

If you're using conda:

conda create -n cqfs python=3.7 anaconda
conda activate cqfs

Remember to add this project in the PYTHONPATH environmental variable if you plan to run the experiments on the terminal:

export PYTHONPATH=$PYTHONPATH:/path/to/project/folder

Then, make sure you correctly activated the environment and install all the required packages through pip:

pip install -r requirements.txt

After installing the dependencies, it is suggested to compile Cython code in the repository.

In order to compile you must first have installed: gcc and python3 dev. Under Linux those can be installed with the following commands:

sudo apt install gcc 
sudo apt-get install python3-dev

If you are using Windows as operating system, the installation procedure is a bit more complex. You may refer to THIS guide.

Now you can compile all Cython algorithms by running the following command. The script will compile within the current active environment. The code has been developed for Linux and Windows platforms. During the compilation you may see some warnings.

python run_compile_all_cython.py

D-Wave Setup

In order to make use of D-Wave cloud services you must first sign-up to D-Wave Leap and get your API token.

Then, you need to run the following command in the newly created Python environment:

dwave setup

This is a guided setup for D-Wave Ocean SDK. When asked to select non-open-source packages to install you should answer y and install at least D-Wave Drivers (the D-Wave Problem Inspector package is not required, but could be useful to analyse problem solutions, if solving problems with the QPU only).

Then, continue the configuration by setting custom properties (or keeping the default ones, as we suggest), apart from the Authentication token field, where you should paste your API token obtained on the D-Wave Leap dashboard.

You should now be able to connect to D-Wave cloud services. In order to verify the connection, you can use the following command, which will send a test problem to D-Wave's QPU:

dwave ping

Running CQFS Experiments

First of all, you need to prepare the original files for the datasets.

For The Movies Dataset you need to download The Movies Dataset from Kaggle and place the compressed files in the directory recsys/Data_manager_offline_datasets/TheMoviesDataset/, making sure the file is called the-movies-dataset.zip.

For CiteULike_a you need to download the following .zip file and place it in the directory recsys/Data_manager_offline_datasets/CiteULike/, making sure the file is called CiteULike_a_t.zip.

We cannot provide data for Xing Challenge 2017, but if you have the dataset available, place the compressed file containing the dataset's original files in the directory recsys/Data_manager_offline_datasets/XingChallenge2017/, making sure the file is called xing_challenge_data_2017.zip.

After preparing the datasets, you should run the following command under the data directory:

python split_NameOfTheDataset.py

This python script will generate the data splits used in the experiments. Moreover, it will preprocess the dataset and check for any error in the preprocessing phase. The resulting splits are saved in the recsys/Data_manager_split_datasets directory.

After splitting the dataset, you can actually run the experiments. All the experiment scripts are in the experiments directory, so enter this folder first. Each dataset has separated experiment scripts that you can find in the corresponding directories. From now on, we will assume that you are running the following commands in the dataset-specific folders, thus running the scripts contained there.

Collaborative models

First of all, we need to optimize the chosen collaborative models to use with CQFS. To do so, run the following command:

python CollaborativeFiltering.py

The resulting models will be saved into the results directory.

CQFS

Then, you can run the CQFS procedure. We divided the procedure into a selection phase and a recommendation phase. To perform the selection through CQFS run the following command:

python CQFS.py

This script will solve the CQFS problem on the corresponding dataset and save all the selected features in appropriate subdirectories under the results directory.

After solving the feature selection problem, you should run the following command:

python CQFSTrainer.py

This script will optimize an ItemKNN content-based recommender system for each selection corresponding to the given hyperparameters (and previously obtained through CQFS), using only the selected features. Again, all the results are saved in the corresponding subdirectories under the results directory.

NOTE: Each selection with D-Wave Leap hybrid service on these problems is performed in around 8 seconds for The Movies Dataset and around 30 for CiteULike_a. Therefore, running the script as it is would result in consuming all the free time given with the developer plan on D-Wave Leap and may result in errors or invalid selections when there's no free time remaining.

We suggest to reduce the number of hyperparameters passed when running the experiments or, even better, chose a collaborative model and perform all the experiments on it.

This is not the case when running experiments with Simulated Annealing, since it is executed locally.

For Xing Challenge 2017 experiments run directly on the D-Wave QPU. Leaving all the hyperparameters unchanged, all the experiments should not exceed the free time of the developer plan. Pay attention when increasing the number of reads from the sampler or the annealing time.

Baselines

In order to obtain the baseline evaluations you can run the corresponding scripts with the following commands:

# ItemKNN content-based with all the features
python baseline_CBF.py

# ItemKNN content-based with features selected through TF-IDF
python baseline_TFIDF.py

# CFeCBF feature weighting baseline
python baseline_CFW.py

Acknowledgements

Software produced by Riccardo Nembrini. Recommender systems library by Maurizio Ferrari Dacrema.

Article authors: Riccardo Nembrini, Maurizio Ferrari Dacrema, Paolo Cremonesi

Owner
Quantum Computing Lab @ Politecnico di Milano
Quantum Machine Learning group
Quantum Computing Lab @ Politecnico di Milano
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022