Implementation of the HMAX model of vision in PyTorch

Overview

PyTorch implementation of HMAX

PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for Computational Cognitive Neuroscience:

http://maxlab.neuro.georgetown.edu/hmax.html

The S and C units of the HMAX model can almost be mapped directly onto TorchVision's Conv2d and MaxPool2d layers, where channels are used to store the filters for different orientations. However, HMAX also implements multiple scales, which doesn't map nicely onto the existing TorchVision functionality. Therefore, each scale has its own Conv2d layer, which are executed in parallel.

Here is a schematic overview of the network architecture:

layers consisting of units with increasing scale
S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1
 \ /   \ /   \ /   \ /   \ /   \ /   \ /   \ /
  C1    C1    C1    C1    C1    C1    C1    C1
   \     \     \    |     /     /     /     /
           ALL-TO-ALL CONNECTIVITY
   /     /     /    |     \     \     \     \
  S2    S2    S2    S2    S2    S2    S2    S2
   |     |     |     |     |     |     |     |
  C2    C2    C2    C2    C2    C2    C2    C2

Installation

This script depends on the NumPy, SciPy, PyTorch and TorchVision packages.

Clone the repository somewhere and run the example.py script:

git clone https://github.com/wmvanvliet/pytorch_hmax
python example.py

Usage

See the example.py script on how to run the model on 10 example images.

You might also like...
Pytorch implementation of
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

This repository contains a pytorch implementation of
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

PyTorch implementation of
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

A PyTorch Implementation of ViT (Vision Transformer)
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Pytorch implementation of the DeepDream computer vision algorithm
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Unofficial PyTorch implementation of MobileViT based on paper
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Comments
  • Provide direct (not nested) path to stimuli

    Provide direct (not nested) path to stimuli

    Hi,

    great repo and effort. I really admire your courage to write HMAX in python. I have a question about loading data in, namely about this part of the code: https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L18

    I know that by default, the ImageFolder expects to have nested folders (as stated in docs or mentioned in this issue) but it's quite clumsy in this case. Eg even if you look at your example, having subfolders for each photo just doesn't look good. Would you have a way how to go around this? Any suggestion on how to provide only a path to all images and not this nested path? I was reading some discussions but haven't figured out how to implement it.


    One more question (I didn't want to open an extra issue for that), shouldn't in https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L28 be batch_size=len(images)) instead of batch_size=10 (written symbolically)?

    Thanks.

    opened by jankaWIS 5
  • Input of non-square images fails

    Input of non-square images fails

    Hi again, I was playing a bit around and discovered that it fails for non-square dimensional images, i.e. where height != width. Maybe I was looking wrong or missed something, but I haven't found it mentioned anywhere and the docs kind of suggests that it can be any height and any width. The same goes for the description of the layers (e.g. s1). In the other issue, you mentioned that

    One thing you may want to add to this transformer pipeline is a transforms.Resize followed by a transforms.CenterCrop to ensure all images end up having the same height and width

    but didn't mention why. Why is it not possible for non-square images? Is there any workaround if one doesn't want to crop? Maybe to pad like in this post*?

    To demonstrate the issue:

    import os
    import torch
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    import pickle
    
    import hmax
    
    path_hmax = './'
    # Initialize the model with the universal patch set
    print('Constructing model')
    model = hmax.HMAX(os.path.join(path_hmax,'universal_patch_set.mat'))
    
    # A folder with example images
    example_images = datasets.ImageFolder(
        os.path.join(path_hmax,'example_images'),
        transform=transforms.Compose([
            transforms.Resize((400, 500)),
            transforms.CenterCrop((400, 500)),
            transforms.Grayscale(),
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * 255),
        ])
    )
    
    # A dataloader that will run through all example images in one batch
    dataloader = DataLoader(example_images, batch_size=10)
    
    # Determine whether there is a compatible GPU available
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # Run the model on the example images
    print('Running model on', device)
    model = model.to(device)
    for X, y in dataloader:
        s1, c1, s2, c2 = model.get_all_layers(X.to(device))
    
    print('[done]')
    

    will give an error in the forward function:

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    [<ipython-input-7-a6bab15d9571>](https://localhost:8080/#) in <module>()
         33 model = model.to(device)
         34 for X, y in dataloader:
    ---> 35     s1, c1, s2, c2 = model.get_all_layers(X.to(device))
         36 
         37 # print('Saving output of all layers to: output.pkl')
    
    4 frames
    [/gdrive/MyDrive/Colab Notebooks/data_HMAX/pytorch_hmax/hmax.py](https://localhost:8080/#) in forward(self, c1_outputs)
        285             conv_output = conv_output.view(
        286                 -1, self.num_orientations, self.num_patches, conv_output_size,
    --> 287                 conv_output_size)
        288 
        289             # Pool over orientations
    
    RuntimeError: shape '[-1, 4, 400, 126, 126]' is invalid for input of size 203616000
    

    *Code for that:

    import torchvision.transforms.functional as F
    
    class SquarePad:
        def __call__(self, image):
            max_wh = max(image.size)
            p_left, p_top = [(max_wh - s) // 2 for s in image.size]
            p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
            padding = (p_left, p_top, p_right, p_bottom)
            return F.pad(image, padding, 0, 'constant')
    
    target_image_size = (224, 224)  # as an example
    # now use it as the replacement of transforms.Pad class
    transform=transforms.Compose([
        SquarePad(),
        transforms.Resize(target_image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
    
    opened by jankaWIS 1
Releases(v0.2)
  • v0.2(Jul 7, 2022)

    For this version, I've modified the HMAX code a bit to exactly match that of the original MATLAB code of Maximilian Riesenhuber. This is a bit slower and consumes a bit more memory, as the code needs to work around some subtle differences between the MATLAB and PyTorch functions. Perhaps in the future, we could add an "optimized" model that is allowed to deviate from the reference implementation for increased efficiency, but for now I feel it is more important to follow the reference implementation to the letter.

    Major change: default C2 activation function is now 'euclidean' instead of 'gaussian'.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(Jul 7, 2022)

Owner
Marijn van Vliet
Research Software Engineer.
Marijn van Vliet
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022