An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

Overview

AdaOPS

Build Status

Coverage Status

codecov.io

An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface. The paper of AdaOPS was published on NeurIPS'2021.

If you are trying to use this package and require more documentation, please file an issue!

Installation

Press ] key to enter the package management mode of Julia. Then, execute the following code.

pkg> add "POMDPs"
pkg> registry add "https://github.com/JuliaPOMDP/Registry.git"
pkg> add AdaOPS

Usage

using POMDPs, POMDPModels, POMDPSimulators, AdaOPS

pomdp = TigerPOMDP()

solver = AdaOPSSolver(bounds=IndependentBounds(-20.0, 0.0))
planner = solve(solver, pomdp)

for (s, a, o) in stepthrough(pomdp, planner, "s,a,o", max_steps=10)
    println("State was $s,")
    println("action $a was taken,")
    println("and observation $o was received.\n")
end

For minimal examples of problem implementations, see this notebook and the POMDPs.jl generative docs.

Solver Options

Solver options can be found in the AdaOPSSolver docstring and accessed using Julia's built in documentation system (or directly in the Solver source code). Each option has its own docstring and can be set with a keyword argument in the AdaOPSSolver constructor.

Belief Packing

delta

A δ-packing of observation branches will be generated, i.e., the belief nodes with L1 distance less than delta are merged.

Adaptive Particle Filter

The core idea of the adaptive particle filter is that it can change the number of particles adaptively and use more particles to estimate the belief when needed.

grid

grid is used to split the state space into multidimensional bins, so that KLD-Sampling can estimate the particle numbers according to the number of bins occupied. First, a function for converting a state to a multidimensional vector should be implemented, i.e., Base.convert(::Type{SVector{D, Float64}},::S), where D is the dimension of the resulted vector. Then, we define a StateGrid to discretize or split the state space. A StateGrid is consist of a vector of cutpoints in each dimension. These cutpoints divide the whole space into small tiles. In each dimension, a number of intervals constitute the grid, and each of these intervals is left-closed and right-open with the endpoints be cutpoints with the exception of the left-most interval. For example, a StateGrid can be defined as StateGrid([dim1_cutpoints], [dim2_cutpoints], [dim3_cutpoints]). All states lie in one tile will be taken as the same. With the number of tiles (bins) occupied, we can estimate the number of particles using KLD-Sampling.

max_occupied_bins

max_occupied_bins is the maximum number of bins occupied by a belief. Normally, it is exactly the grid size. However, in some domains, such as Roomba, only states within the room is accessible, and the corresponding bins will never be occupied.

min_occupied_bins

min_occupied_bins is the minimum number of bins occupied by a belief. Normally, it default to 2. A belief occupying min_occupied_bins tiles will be estimated with m_min particles. Increasing min_occupied_bins indicates that a belief need to occupy more bins so as to be estimated by the same amount of particles.

m_min

m_min is the minimum number of particles used for approximating beliefs.

m_max

m_max is the maximum number of particles used for approximating a belief. Normally, m_max is set to be big enough so that KLD-Sampling determines the number of particles used. When the KLD-Sampling is disabled, i.e. grid=StateGrid(), m_max will be sampled during the resampling.

zeta

zeta is the target error when estimating a belief. Spcifically, we use KLD Sampling to calculate the number of particles needed, where zeta is the targe Kullback-Leibler divergence between the estimated belief and the true belief. In AdaOPS, zeta is automatically adjusted according to the minimum number of bins occupied such that the minimum number of particles KLD-Sampling method suggests is exactly m_min.

Bounds

Dependent bounds

The bound passed into AdaOPSSolver can be a function in the form of lower_bound, upper_bound = f(pomdp, wpf_belief), or any other objects for which a AdaOPS.bounds(obj::OBJECT, pomdp::POMDP, b::WPFBelief, max_depth::Int, bounds_warning::Bool) function is implemented.

Independent bounds

In most cases, the recommended way to specify bounds is with an IndependentBounds object, i.e.

AdaOPSSolver(bounds=IndependentBounds(lower, upper))

where lower and upper are either a number, a function or some other objects (see below).

Often, the lower bound is calculated with a default policy, this can be accomplished using a PORollout, FORollout or RolloutEstimator. For the in-depth details, please refer to BasicPOMCP. Note that when mixing the Rollout structs from this package with those from BasicPOMCP, you should prefix the struct name with module name.

Both the lower and upper bounds can be initialized with value estimations using a FOValue or POValue. FOValue support any offline MDP Solver or Policy. POValue support any offline POMDP Solver or Policy.

If lower or upper is a function, it should handle two arguments. The first is the POMDP object and the second is the WPFBelief. To access the state particles in a WPFBelief b, use particles(b). To access the corresponding weights of particles in a WPFBelief b, use weights(b). All AbstractParticleBelief APIs are supported for WPFBelief. More details can be found in the solver source code.

If an object o is passed in, AdaOPS.bound(o, pomdp::POMDP, b::WPFBelief, max_depth::Int) will be called.

In most cases, the check_terminal and consistency_fix_thresh keyword arguments of IndependentBounds should be used to add robustness (see the IndependentBounds docstring for more info). When using rollout-base bounds, you can specify max_depth keyword argument to set the max depth of rollout.

Example

For the BabyPOMDP from POMDPModels, bounds setup might look like this:

using POMDPModels
using POMDPPolicies
using BasicPOMCP

always_feed = FunctionPolicy(b->true)
lower = FORollout(always_feed)

function upper(pomdp::BabyPOMDP, b::WPFBelief)
    if all(s==true for s in particles(b)) # all particles are hungry
        return pomdp.r_hungry # the baby is hungry this time, but then becomes full magically and stays that way forever
    else
        return 0.0 # the baby magically stays full forever
    end
end

solver = AdaOPSSolver(bounds=IndependentBounds(lower, upper))

Visualization

D3Trees.jl can be used to visualize the search tree, for example

using POMDPs, POMDPModels, POMDPModelTools, D3Trees, AdaOPS

pomdp = TigerPOMDP()

solver = AdaOPSSolver(bounds=(-20.0, 0.0), tree_in_info=true)
planner = solve(solver, pomdp)
b0 = initialstate(pomdp)

a, info = action_info(planner, b0)
inchrome(D3Tree(info[:tree], init_expand=5))

will create an interactive tree.

Analysis

Two utilities, namely info_analysis and hist_analysis, are provided for getting a sense of how the algorithm is working. info_analysis takes the infomation returned from action_info(planner, b0). It will first visualize the tree if the tree_in_info option is turned on. Then it will show stats such as number nodes expanded, total explorations, average observation branches, and so on. hist_analysis takes the hist from HistoryRecorder simulator. It will show similar stats as info_analysis but in the form of figures. It should be noted that HistoryRecoder will store the tree of each single step, which makes it memory-intensive. An example is shown as follows.

using POMDPs, AdaOPS, RockSample, POMDPSimulators, ParticleFilters, POMDPModelTools

m = RockSamplePOMDP(11, 11)

b0 = initialstate(m)
s0 = rand(b0)

bound = AdaOPS.IndependentBounds(FORollout(RSExitSolver()), FOValue(RSMDPSolver()), check_terminal=true, consistency_fix_thresh=1e-5)

solver = AdaOPSSolver(bounds=bound,
                        delta=0.3,
                        m_min=30,
                        m_max=200,
                        tree_in_info=true,
                        num_b=10_000
                        )

adaops = solve(solver, m)
a, info = action_info(adaops, b0)
info_analysis(info)

num_particles = 30000
@time hist = simulate(HistoryRecorder(max_steps=90), m, adaops, SIRParticleFilter(m, num_particles), b0, s0)
hist_analysis(hist)
@show undiscounted_reward(hist)

Reference

@inproceedings{wu2021adaptive,
  title={Adaptive Online Packing-guided Search for POMDPs},
  author={Wu, Chenyang and Yang, Guoyu and Zhang, Zongzhang and Yu, Yang and Li, Dong and Liu, Wulong and others},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
You might also like...
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

Camview - A CLI-tool used to stream CCTV online footage based on URL params
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surface-emitting lasers, nano-antennas, and more.

A SAT-based sudoku solver
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Comments
  • TagBot trigger issue

    TagBot trigger issue

    This issue is used to trigger TagBot; feel free to unsubscribe.

    If you haven't already, you should update your TagBot.yml to include issue comment triggers. Please see this post on Discourse for instructions and more details.

    If you'd like for me to do this for you, comment TagBot fix on this issue. I'll open a PR within a few hours, please be patient!

    opened by JuliaTagBot 7
  • Unintuitive default timeout warning threshold

    Unintuitive default timeout warning threshold

    https://github.com/LAMDA-POMDP/AdaOPS.jl/blob/e8593ebec82f064efd08b2b34301dbb1011281aa/src/AdaOPS.jl#L143

    https://github.com/LAMDA-POMDP/AdaOPS.jl/blob/e8593ebec82f064efd08b2b34301dbb1011281aa/src/planner.jl#L15

    Default results in timeout warnings whenever planning time exceeds 2*T_max^2 . For planning times less than 1 second this results in far too many warnings printed to screen.

    For example, if we have T_max = 0.01, then the warning is triggered whenever planning time exceeds 0.0002s, which would be at every action call, provided that the max_trials option is set to be sufficiently high.

    Also, it may be worth looking at this issue seeing as CPUTime seems to have a lot of overhead, especially for problems with quick gen functions

    opened by WhiffleFish 1
  • CompatHelper: bump compat for

    CompatHelper: bump compat for "Distributions" to "0.25"

    This pull request changes the compat entry for the Distributions package from 0.22 - 0.24 to 0.22 - 0.24, 0.25.

    This keeps the compat entries for earlier versions.

    Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request.

    opened by github-actions[bot] 1
  • CompatHelper: add new compat entry for

    CompatHelper: add new compat entry for "POMDPModels" at version "0.4"

    This pull request sets the compat entry for the POMDPModels package to 0.4.

    This is a brand new compat entry. Previously, you did not have a compat entry for the POMDPModels package.

    Note: I have not tested your package with this new compat entry. It is your responsibility to make sure that your package tests pass before you merge this pull request. Note: Consider tagging a patch release immediately after merging this PR, as downstream packages may depend on this for tests to pass.

    opened by github-actions[bot] 0
Releases(v0.5.3)
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022