Code repository for the paper Computer Vision User Entity Behavior Analytics

Related tags

Deep LearningCVUEBA
Overview

Computer Vision User Entity Behavior Analytics

Code repository for "Computer Vision User Entity Behavior Analytics"

Code Description

dataset.csv

As discussed in the manuscript, CVUEBA was designed to be utilized in production. Thus, as an extra layer of security, we keep the features used as well as the feature extraction module proprietary.

We observed that one can obtain similar performance on the CERT Insider Threat dataset using a combination of features introduced by various publications in concert with the features we introduce in the main manuscript.

dataset.csv is a CSV file containing the extracted features for various users for various days in the CERT Insider Threat dataset. For space reasons, we publish a small segment of the original dataset here. Reported instances were chosen by randomly selecting from the set of encoded images used to evaluate CVUEBA and storing unique behavior instances corresponding to the channels of these images.

We did not wish for all of the code to be proprietary, and thus felt this was an acceptable compromise.

split_dataset.py

Splits dataset into train, test, and validation sets.

sae_hopt.py & SAE.hyperopt

This script is used for hyperparameter search for the SAE model using the HyperOpt module. Results of tuning are stored within SAE.hyperopt.

SAE.py

Defines the SAE model. Optimal hyperparameters are determined as shown in the script sae_hopt.py.

generate_images.py

Trains the SAE model using optimal parameters stored in SAE.hyperopt if a trained model is not present. Uses this model to generate color image encodings of behavior.

extract_non_dynamic.py and nondynamic.pkl

CVUEBA uses non-dynamic information to improve model precision. This script extracts the information from the CERT Insider Threat dataset and stores it within nondynamic.pkl.

To execute this script you would need to download the CERT Insider Threat dataset. For demo purposes, we provide a pre-extracted pickle file in the repo.

prep_data_model.py

This is a custom data loader that uses the image directory name and nondynamic.pkl to pull the information to be passed into the CVUEBA model.

CVUEBA.py

Loads train and test set data, builds CVUEBA model, trains and saves model, and reports evaluation metrics.

How To Use

We provide a requirements.txt file that lists all dependencies required to run the demo.

The script run.sh is provided to execute all the various python scripts in order to split data, generate images, and evaluate CVUEBA.

Owner
Sameer Khanna
I am studying Machine Learning at Stanford University. My interests are in efficient modeling, whether it is computational efficiency or labeling efficiency.
Sameer Khanna
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022