Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Overview

Scene Graph Generation from Natural Language Supervision

This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph from Natural Language Supervision" accepted in ICCV 2021.

overview figure

Top (our setting): Our goal is learning to generate localized scene graphs from image-text pairs. Once trained, our model takes an image and its detected objects as inputs and outputs the image scene graph. Bottom (our results): A comparison of results from our method and state-of-the-art (SOTA) with varying levels of supervision.

Contents

  1. Overview
  2. Qualitative Results
  3. Installation
  4. Data
  5. Metrics
  6. Pretrained Object Detector
  7. Pretrained Scene Graph Generation Models
  8. Model Training
  9. Model Evaluation
  10. Acknowledgement
  11. Reference

Overview

Learning from image-text data has demonstrated recent success for many recognition tasks, yet is currently limited to visual features or individual visual concepts such as objects. In this paper, we propose one of the first methods that learn from image-sentence pairs to extract a graphical representation of localized objects and their relationships within an image, known as scene graph. To bridge the gap between images and texts, we leverage an off-the-shelf object detector to identify and localize object instances, match labels of detected regions to concepts parsed from captions, and thus create "pseudo" labels for learning scene graph. Further, we design a Transformer-based model to predict these "pseudo" labels via a masked token prediction task. Learning from only image-sentence pairs, our model achieves 30% relative gain over a latest method trained with human-annotated unlocalized scene graphs. Our model also shows strong results for weakly and fully supervised scene graph generation. In addition, we explore an open-vocabulary setting for detecting scene graphs, and present the first result for open-set scene graph generation.

Qualitative Results

Our generated scene graphs learned from image descriptions

overview figure

Partial visualization of Figure 3 in our paper: Our model trained by image-sentence pairs produces scene graphs with a high quality (e.g. "man-on-motorcycle" and "man-wearing-helmet" in first example). More comparison with other models trained by stronger supervision (e.g. unlocalized scene graph labels, localized scene graph labels) can be viewed in the Figure 3 of paper.

Our generated scene graphs in open-set and closed-set settings

overview figure

Figure 4 in our paper: We explored open-set setting where the categories of target concepts (objects and predicates) are unknown during training. Compared to our closed-set model, our open-set model detects more concepts outside the evaluation dataset, Visual Genome (e.g. "swinge", "mouse", "keyboard"). Our results suggest an exciting avenue of large-scale training of open-set scene graph generation using image captioning dataset such as Conceptual Caption.

Installation

Check INSTALL.md for installation instructions.

Data

Check DATASET.md for instructions of data downloading.

Metrics

Explanation of metrics in this toolkit are given in METRICS.md

Pretrained Object Detector

In this project, we primarily use the detector Faster RCNN pretrained on Open Images dataset. To use this repo, you don't need to run this detector. You can directly download the extracted detection features, as the instruction in DATASET.md. If you're interested in this detector, the pretrained model can be found in TensorFlow 1 Detection Model Zoo: faster_rcnn_inception_resnet_v2_atrous_oidv4.

Additionally, to compare with previous fully supervised models, we also use the detector pretrained by Scene-Graph-Benchmark. You can download this Faster R-CNN model and extract all the files to the directory checkpoints/pretrained_faster_rcnn.

Pretrained Scene Graph Generation Models

Our pretrained SGG models can be downloaded on Google Drive. The details of these models can be found in Model Training section below. After downloading, please put all the folders to the directory checkpoints/. More pretrained models will be released. Stay tuned!

Model Training

To train our scene graph generation models, run the script

bash train.sh MODEL_TYPE

where MODEL_TYPE specifies the training supervision, the training dataset and the scene graph generation model. See details below.

  1. Language supervised models: trained by image-text pairs

    • Language_CC-COCO_Uniter: train our Transformer-based model on Conceptual Caption (CC) and COCO Caption (COCO) datasets
    • Language_*_Uniter: train our Transformer-based model on single dataset. * represents the dataset name and can be CC, COCO, and VG
    • Language_OpensetCOCO_Uniter: train our Transformer-based model on COCO dataset in open-set setting
    • Language_CC-COCO_MotifNet: train Motif-Net model with language supervision from CC and COCO datasets
  2. Weakly supervised models: trained by unlocalized scene graph labels

    • Weakly_Uniter: train our Transformer-based model
  3. Fully supervised models: trained by localized scene graph labels

    • Sup_Uniter: train our Transformer-based model
    • Sup_OnlineDetector_Uniter: train our Transformer-based model by using the object detector from Scene-Graph-Benchmark.

You can set CUDA_VISIBLE_DEVICES in train.sh to specify which GPUs are used for model training (e.g., the default script uses 2 GPUs).

Model Evaluation

To evaluate the trained scene graph generation model, you can reuse the commands in train.sh by simply changing WSVL.SKIP_TRAIN to True and setting OUTPUT_DIR as the path to your trained model. One example can be found in test.sh and just run bash test.sh.

Acknowledgement

This repository was built based on Scene-Graph-Benchmark for scene graph generation and UNITER for image-text representation learning.

We specially would like to thank Pengchuan Zhang for providing the object detector pretrained on Objects365 dataset which was used in our ablation study.

Reference

If you are using our code, please consider citing our paper.

@inproceedings{zhong2021SGGfromNLS,
  title={Learning to Generate Scene Graph from Natural Language Supervision},
  author={Zhong, Yiwu and Shi, Jing and Yang, Jianwei and Xu, Chenliang and Li, Yin},
  booktitle={ICCV},
  year={2021}
}
Owner
Yiwu Zhong
Ph.D. Student of Computer Science in University of Wisconsin-Madison
Yiwu Zhong
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022