This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Overview

Transferability for domain generalization

This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on our paper Quantifying and Improving Transferability in Domain Generalization. The code is adapted from the DomainBed suite.

  • python version: 3.6
  • pytorch version: 1.7.1
  • cuda version: 10.2

We aim to achieve two goals:

  • measure the transferability between domains
  • implement the Transfer algorithm

Currently we support four datasets:

  • RotatedMNIST
  • PACS
  • OfficeHome
  • WILDS-FMoW

To get started, first obtain a datasplit of a dataset. For example, if the dataset is RotatedMNIST, we run:

python save_datasets.py --dataset=RotatedMNIST

The next step is to run the training algorithm. For example, if we want to train ERM:

python -m train --algorithm=ERM --dataset=RotatedMNIST

The repo also supports the training of Transfer algorithm. For instance, if we want to train Transfer on RotatedMNIST with 30 steps per inner loop with projection radius 10.0:

python -m train --algorithm=Transfer --dataset=RotatedMNIST \
--output_dir="results" \
--steps=8000 \
--lr=0.01 \
--lr_d=0.01 \
--d_steps_per_g=30 \
--train_delta=10.0

Finally we could run evaluation after the training process. For example, if we want to evaluate ERM with delta=2.0:

python transfer_measure.py --algorithm=ERM --delta=2.0 --adv_epoch=10 --seed=0

Similarly, if we run:

python -m transfer_measure \
--d_steps_per_g=30 \
--train_delta=10.0 \
--algorithm=Transfer \
--dataset=RotatedMNIST \
--delta=2.0 \
--adv_epoch=10 \
--seed=0

We could evaluate the Transfer algorithm.

License

This source code is released under the MIT license, included here.

Citation

Comments are welcome! Please use the following bib if you use our code in your research:

@article{zhang2021quantifying,
      title={Quantifying and Improving Transferability in Domain Generalization}, 
      author={Guojun Zhang and Han Zhao and Yaoliang Yu and Pascal Poupart},
      year={2021},
      journal={Advances in neural information processing systems},
}
Owner
gordon
CS Ph.D. in machine learning.
gordon
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022