This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Overview

Transferability for domain generalization

This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on our paper Quantifying and Improving Transferability in Domain Generalization. The code is adapted from the DomainBed suite.

  • python version: 3.6
  • pytorch version: 1.7.1
  • cuda version: 10.2

We aim to achieve two goals:

  • measure the transferability between domains
  • implement the Transfer algorithm

Currently we support four datasets:

  • RotatedMNIST
  • PACS
  • OfficeHome
  • WILDS-FMoW

To get started, first obtain a datasplit of a dataset. For example, if the dataset is RotatedMNIST, we run:

python save_datasets.py --dataset=RotatedMNIST

The next step is to run the training algorithm. For example, if we want to train ERM:

python -m train --algorithm=ERM --dataset=RotatedMNIST

The repo also supports the training of Transfer algorithm. For instance, if we want to train Transfer on RotatedMNIST with 30 steps per inner loop with projection radius 10.0:

python -m train --algorithm=Transfer --dataset=RotatedMNIST \
--output_dir="results" \
--steps=8000 \
--lr=0.01 \
--lr_d=0.01 \
--d_steps_per_g=30 \
--train_delta=10.0

Finally we could run evaluation after the training process. For example, if we want to evaluate ERM with delta=2.0:

python transfer_measure.py --algorithm=ERM --delta=2.0 --adv_epoch=10 --seed=0

Similarly, if we run:

python -m transfer_measure \
--d_steps_per_g=30 \
--train_delta=10.0 \
--algorithm=Transfer \
--dataset=RotatedMNIST \
--delta=2.0 \
--adv_epoch=10 \
--seed=0

We could evaluate the Transfer algorithm.

License

This source code is released under the MIT license, included here.

Citation

Comments are welcome! Please use the following bib if you use our code in your research:

@article{zhang2021quantifying,
      title={Quantifying and Improving Transferability in Domain Generalization}, 
      author={Guojun Zhang and Han Zhao and Yaoliang Yu and Pascal Poupart},
      year={2021},
      journal={Advances in neural information processing systems},
}
Owner
gordon
CS Ph.D. in machine learning.
gordon
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022