Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

Overview

Awesome Graph Classification

Awesome PRs Welcome License repo sizebenedekrozemberczki

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.

Relevant graph classification benchmark datasets are available [here].

Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.


Contents

  1. Matrix Factorization
  2. Spectral and Statistical Fingerprints
  3. Deep Learning
  4. Graph Kernels

License

Comments
  • Graph classification method from ICDM '19

    Graph classification method from ICDM '19

    Hi, thanks for maintaining such a comprehensive list of methods for graph-level machine learning. I am an author of the ICDM 2019 paper "Distribution of Node Embeddings as Multiresolution Features for Graphs" and was wondering if it could be included on this list?
    Overview: Derives a randomized feature map for a graph based on the distribution of its node embeddings in vector space. As the proposed technique is an explicit feature map, it probably fits in the section on "spectral and statistical fingerprints", but its theoretical underpinnings come from the graph kernel literature and so it might fit in that section instead. Won best student paper at ICDM 2019.
    Paper: [https://ieeexplore.ieee.org/document/8970922] Code: [https://github.com/GemsLab/RGM]

    opened by markheimann 3
  • Another graph paper

    Another graph paper

    You can also add to the list "Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction" from NeurIPS18.

    It's a novel graph architecture for mapping images to scene graphs using a permutation invariant property, which achieves a new state-of-the-art results on Visual Genome dataset.

    paper: https://arxiv.org/abs/1802.05451 code: https://github.com/shikorab/SceneGraph

    opened by roeiherz 3
  • Please add KDD 2019 paper, data, code

    Please add KDD 2019 paper, data, code

    Hi!

    Thank you for this awesome repository!

    Could you please add the following paper, code, and data link to the repository: Paper: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks Authors: Srijan Kumar, Xikun Zhang, Jure Leskovec Venue: ACM SIGKDD 2019 (Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining) Project page: http://snap.stanford.edu/jodie/ Code: https://github.com/srijankr/jodie/ All datasets: http://snap.stanford.edu/jodie/

    Many thanks, Srijan

    opened by srijankr 3
  • Graph classification based on topological features

    Graph classification based on topological features

    Hi there,

    please add our paper “A Persistent Weisfeiler–Lehman Procedure for Graph Classification” as well to this repository:

    Paper: http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf Code: https://github.com/BorgwardtLab/P-WL

    Best, Bastian

    opened by Pseudomanifold 2
  • Updates of the library py-graph

    Updates of the library py-graph

    Hi, I am the author of the library py-graph. Thanks a lot for including our library! Just to inform you that we updated our library and now there are implementations for 8 graph kernels. We also upload our library to PyPI. Thanks!

    opened by jajupmochi 2
  • Missing SAGPool

    Missing SAGPool

    Attention-based pooling operator without having to learn n^2 cluster-assignment matrix as in DiffPool. paper: https://arxiv.org/abs/1904.08082 code: https://github.com/inyeoplee77/SAGPool

    opened by choltz95 2
  • Add a paper regarding to semi-supervised heterogenous graph embedding

    Add a paper regarding to semi-supervised heterogenous graph embedding

    hi, i'm trying to add our paper on semi-supervised heterogenous graph embedding to your awesome repository. it was cited 60+ times. hope you accept the pull request. thanks!

    opened by chentingpc 2
  • KDD2020 Paper

    KDD2020 Paper

    Hi,

    in our KDD2020 work we solve a graph classification problem with nice results!

    Paper: https://dl.acm.org/doi/10.1145/3394486.3403383 Code: https://github.com/tlancian/contrast-subgraph

    Would you add it to the repo?

    Thank you, Tommaso

    opened by tlancian 1
  • some other graph level classification papers

    some other graph level classification papers

    Hi, those are some other graph level classification papers for your information Graph Kernel: "A Graph Kernel Based on the Jensen-Shannon Representation Alignment" IJCAI 2015 Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock paper: http://ijcai.org/Proceedings/15/Papers/468.pdf code: https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015

    “An Aligned Subtree Kernel for Weighted Graphs” ICML 2015 Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock paper: http://proceedings.mlr.press/v37/bai15.pdf code will be released soon

    Deep Learning: "Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification" ECML-PKDD 2019 Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock paper: https://arxiv.org/abs/1904.04238 code: https://github.com/baiuoy/ASGCN_ECML-PKDD2019 (will be released soon)

    opened by David-AJ 1
  • Add Ego-CNN (ICML'19) and fix 1 typo

    Add Ego-CNN (ICML'19) and fix 1 typo

    Hi, thanks for this awesome repo on graph classification. Please help review the PR. I'd like to add our paper and help clarify 1 workshop paper.

    Thanks, Ruochun

    opened by rctzeng 1
  • A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    A Simple Yet Effective Baseline for Non-Attribute Graph Classification

    Hi,

    Thank you for your paper list. I am the author of the paper A Simple Yet Effective Baseline for Non-Attribute Graph Classification. It has been accepted by ICLR 2019 graph representation learning workshop (https://rlgm.github.io/). Would you like to update the record? Thanks!

    Best, Chen

    opened by Chen-Cai-OSU 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022