Testbed of AI Systems Quality Management

Overview

qunomon

Description

A testbed for testing and managing AI system qualities.

Demo

Sorry. Not deployment public server at alpha version.

Requirement

Installation prerequisites

Support os is Windows10 Pro and macOS.

  • Windows10 Pro 1909 later
  • macOS v10.15 later

Installation

Usage

1.launch

Execute the following command as root of this repository.

docker-compose up

2.access web browser

http://127.0.0.1:8888/

Development for windows

Installation

1.PackageManager

  • Launch powershell with administrator permission.

  • powershell

    Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
    

2.Python

  • powershell
    cinst python --version=3.6.8 -y
    

Setup python virtual environment for Backend

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\backend
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r requirements_dev.txt

Setup python virtual environment for IP

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\integration-provider
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r constraints.txt

launch by without container

1.execute bat file

start_up.bat

2.checking web browser

http://127.0.0.1:8080/

3.checking Backend

  • powershell
    curl http://127.0.0.1:5000/qai-testbed/api/0.0.1/health-check
    

4.checking IP

  • powershell
    curl http://127.0.0.1:6000/qai-ip/api/0.0.1/health-check
    

Contribution

Bug reports and pull requests are welcome on GitHub at aistairc/qunomon.

Disclaimer

qunomon is an OSS and alpha version. so qunomon may cause damage to your system and data. You agree to use it at your own risk.

License

Apache License Version 2.0

Author

AIST

You might also like...
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Releases(0.1.15)
  • 0.1.15(Jun 25, 2021)

  • 0.1.14(Jun 8, 2021)

    Added

    #1462 SHAP AITの実装とテスト alyz_regression_shap_0.1 #1485 SHAP AIT plots_scatterの出力figにタイトル(カラムを対象)追加

    Fixed

    #1492 Dependabot alerts対応(urllib3) #1476 Dependabot alerts対応(TensorFlow2.4系から変更) #1465 AITパラメータ見直し(eval_adversarial_example_acc_test_tf2.3_0.1)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.13(May 26, 2021)

    Added

    #1434 クライテリア範囲外でTDを作成できないようにする(バックエンド) #1435 クライテリア範囲外でTDを作成できないようにする(フロントエンド) #1436 パラメータ範囲外でTDを作成できないようにする(フロントエンド) #1437 パラメータ範囲外でTDを作成できないようにする(バックエンド) #1438 インベントリチェック 警告ポップアップを表示する(フロントエンド) #1440 インベントリチェック ファイルフォーマットチェック(一般)

    Fixed

    #1423 AITパラメータ見直し(eval_dnn_coverage_tf1.13_0.1) #1425 AITパラメータ見直し(eval_mnist_acc_tf2.3_0.1) #1454 DependencyAlert解消(5/12)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.12(May 12, 2021)

    Added

    #1416 インベントリチェック ファイル存在チェック #1421 インベントリチェック TD実行時ハッシュチェック

    Fixed

    #1362 #1213の変更部分をテストコードに反映させる #1403 AIT発生エラー見直し AIT-SDK入れ替え #1432 GET TestRunnerでエンコードエラーログが出力される #1442 docker起動でインベントリ登録ができない #1447 DependencyAlert解消(5/10) #1452 pipインストールモジュールのバージョンを固定化する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.11(Apr 28, 2021)

    Added

    #1370 AITの更新 (AITのパラメータ上限下限を表示する) #1374 ait-installerの更新 (AITのパラメータ上限下限を表示する)

    Fixed

    #1402 AIT発生エラー見直し AIT-SDK修正 #1404 AIT発生エラー見直し IP修正 #1405 AIT発生エラー見直し バックエンド修正 #1406 AIT発生エラー見直し フロントエンド修正 #1416 AIT発生エラー見直し AIT-SDK修正(出力先フォルダがない場合に対応)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.10(Apr 14, 2021)

    Added

    #1349 [TF3]MLComponent一覧画面でMLComponentを削除できるようにしたい

    Fixed

    #1385 DependencyAlert解消(3/26) #1391 DependencyAlert解消(4/2) #1361 #1335 により変更された部分をWEB API仕様書に反映をさせる

    Source code(tar.gz)
    Source code(zip)
  • 0.1.9(Mar 26, 2021)

    Added

    #1335 AITのパラメータ上限下限を表示する #144 TestDescription一覧画面の日付指定をカレンダーを用いて行う機能の実装

    Fixed

    なし

    Source code(tar.gz)
    Source code(zip)
  • 0.1.8(Mar 12, 2021)

    Added

    #1212 TD詳細画面-グラフを複数選択して追加したい #1340 TD詳細画面でairflowのログダウンロードURLリンクを表示する #1342 グラフ複数選択時に未登録のものだけを登録したい #1347 [TF3]TD一覧画面でTDを削除できるようにしたい

    Fixed

    #1331 何も選択していない状態で「add to Report」ボタンを押下できてしまう #1337 活性化判定をcheckAddBTNActiveメソッドで対応させるよう処理を統一 #1345 [TD詳細画面]追加グラフの数チェック不整合 #1348 [TD編集画面1]TDの再編集時にTD名のテキストボックスが入力1文字ごとにフォーカスが外れる #1336 docker-compose実行時に、ait-installerが実行されてない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.7(Feb 26, 2021)

  • 0.1.6(Feb 12, 2021)

    Added

    #1200 AIF360の指標を取り込んだAITを作成する #1211 TD詳細画面-どのグラフを選択中か分かるようにしたい #1248 ait.manifest.jsonのreport.measuresにminとmaxを書く

    Fixed

    #1300 jupyter新バージョン3.X以後、AITのset_ait_descriptionにUnicodeEncodeError (漢字、など) #1305 TDでのレポート使用グラフを一つ削除すると、ソートがリセットされる #1312 Dependency alert解消(2/4)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.5(Jan 29, 2021)

    Added

    #1199 TDの品質指標に何を入れれば良いか分かりにくい問題を解消する #1213 [サマリ]manifestのresources,downloadsからpathを削除する

    Fixed

    #1262 eval_bdd100k_aicc_tf2.3のリソース「all_label_accuracy_csv」がタイプ「text」になっている #1272 ローカルにAITイメージがない状態で実行するとairflowでエラーになる #1277 Dependabot alerts解消(2021/1/15)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Jan 15, 2021)

    Added

    #1213 manifestのresources,downloadsからpathを削除する

    Fixed

    #1208 レポートのレーダーチャートが、品質特性2以下だと数量が判別できない #1254 レポートのレーダーチャートの表示範囲が5で固定 #1260 Dependabot alerts解消(2021/1/8)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(Dec 25, 2020)

    Added

    #1166 qlib新規作成

    Fixed

    #1183 TestDescriptionの中で大量の画像を扱うと画面が応答しない #1198 フロントエンド誤字修正 #1203 AITでresoucesに大量のデータをセットすると、TestDescription詳細画面やレポート出力が応答しない #1242 measures無しのAITを登録するとQualityDimensionが反映されない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.2(Dec 10, 2020)

    Added

    #1171 インベントリの選択方法を改善する #1173 レポートのサマリでTD0件の品質特性は出力対象にしないようにする

    Fixed

    #1187 レポート出力時に2.1のレーダーチャートの項目名が長すぎると途中で切れる #1184 airflowのdocker buildが失敗する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Nov 27, 2020)

    Added

    #1071 確認ダイアログの多言語化対応 #1126 作成したAITをtestbedにdeployするツールが必要

    Fixed

    #1099 ブラウザバック、リロードでエラーが発生する画面がある #1123 内部品質名称を英語に変更する #1115 2つ以上あるmeasureのうち、一つだけチェックをいれてTDを作成するとエラーが発生する #1125 READMEの記述を修正(qai-testbed → qunomon) #1163 dag配下のフォルダを削除する #1156 docker-airflowのDockerfileの修正 #1157 Github security alert への対応

    Source code(tar.gz)
    Source code(zip)
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022