Unadversarial Examples: Designing Objects for Robust Vision

Overview

Unadversarial Examples: Designing Objects for Robust Vision

This repository contains the code necessary to replicate the major results of our paper:

Unadversarial Examples: Designing Objects for Robust Vision
Hadi Salman*, Andrew Ilyas*, Logan Engstrom*, Sai Vemprala, Aleksander Madry, Ashish Kapoor
Paper
Blogpost (MSR)
Blogpost (Gradient Science)

@article{salman2020unadversarial,
  title={Unadversarial Examples: Designing Objects for Robust Vision},
  author={Hadi Salman and Andrew Ilyas and Logan Engstrom and Sai Vemprala and Aleksander Madry and Ashish Kapoor},
  journal={arXiv preprint arXiv:2012.12235},
  year={2020}
}

Getting started

The following steps will get you set up with the required packages (additional packages are required for the 3D textures setting, described below):

  1. Clone our repo: git clone https://github.com/microsoft/unadversarial.git

  2. Install dependencies:

    conda create -n unadv python=3.7
    conda activate unadv
    pip install -r requirements.txt
    

Generating unadversarial examples for CIFAR10

Here we show a quick example how to generate unadversarial examples for CIFAR-10. Similar procedure can be used with ImageNet. The entry point of our code is main.py (see the file for a full description of arguments).

1- Download a pretrained CIFAR10 models, e.g.,

mkdir pretrained-models & 
wget -O pretrained-models/cifar_resnet50.ckpt "https://www.dropbox.com/s/yhpp4yws7sgi6lj/cifar_nat.pt?raw=1"

2- Run the following script

python -m src.main \
      --out-dir OUT_DIR \
      --exp-name demo \
      --dataset cifar \
      --data /tmp \
      --arch resnet50 \
      --model-path pretrained-models/cifar_resnet50.ckpt \
      --patch-size 10 \
      --patch-lr 0.001 \
      --training-mode booster \
      --epochs 30 \
      --adv-train 0

You can see the trained patches images in outdir/demo/save/ as training evolves.

3- Now you can evaluate the pretrained model on a boosted CIFAR10-C dataset (trained patch overlaid on CIFAR-10, then corruptions are added). Simply run

python -m src.evaluate_corruptions \
      --out-dir OUT_DIR \
      --exp-name demo \
      --model-path OUT_DIR/demo/checkpoint.pt.best \
      --args-from-store data,dataset,arch,patch_size

This will evaluate the pretrained model on various corruptions and display the results in the terminal.

4- That's it!

Generating 3D unadversarial textures

The following steps were tested on these configurations:

  • Ubuntu 16.04, 8 x NVIDIA 1080Ti/2080Ti, 2x10-core Intel CPUs (w/ HyperThreading, 40 virtual cores), CUDA 10.2
  • Ubuntu 18.04, 2 x NVIDIA K80, 1x12-core Intel CPU, CUDA 10.2

1- Choose a dataset to use as background images; we used ImageNet in our paper, for which you will need to have ImageNet in PyTorch ImageFolder format somewhere on your machine. If you don't have that, you can just use solid colors as the backgrounds (though the results might not match the paper).

2- Install the requirements: you will need a machine with CUDA 10.2 installed (this process might work with other versions of CUDA but we only tested 10.2), as well as docker, nvidia-docker, and the requirements mentioned earlier in the README.

3- Go to the docker/ folder and run docker build --tag TAG ., changing TAG to your preferred name for your docker instance. This will build a docker instance with all the requirements installed!

4- Open launch.py and edit the IMAGENET_TRAIN and IMAGENET_VAL variables to point to the ImageNet dataset, if it's installed and you want to use it. Either way, change TAG on the last line of the file with whatever you named your docker instance in the last step.

5- Alter the parameters in src/configs/config.json according to your setup; the only things we would recommend altering are num_texcoord_renderers (this should not exceed the number of CPU cores you have available), exp_name (the name of the output folder, which will be created inside OUT_DIR from the previous step), and dataset (if you are using ImageNet, you can leave this be, otherwise change it to solids to use solid colors as the backgrounds).

6- From inside the docker folder, run python launch.py [--with-imagenet] --out-dir OUT_DIR --gpus GPUS from the same folder. The --with-imagenet argument should only be provided if you followed step four. The OUT_DIR argument should point to where you want the resulting models/output saved, and the GPUS argument should be a comma-separated list of GPU IDs that you would like to run the job on.

7- This process should open a new terminal (inside your docker instance). In this terminal, run GPU_MODE=0 bash run_imagenet.sh [bus|warplane|ship|truck|car] /src/configs/config.json /out

8- Your 3D unadversarial texture should now be generating! Output, including example renderings, the texture itself, and the model checkpoint will be saved to $(OUT_DIR)/$(exp_name).

An example texture that you would get for the warplane is

Simulating 3D Unadversarial Objects in AirSim

Coming soon!

Environments, 3D models, along with python API for controlling these objects and running online object recognition inside Microsoft's AirSim high-fidelity simulator.

Maintainers

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021)

Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation (CVPR 2021, official Pytorch implementatio

Microsoft 247 Dec 25, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023