A collection of loss functions for medical image segmentation

Related tags

Deep LearningSegLoss
Overview

Loss functions for image segmentation

A collection of loss functions for medical image segmentation

@article{LossOdyssey,
title = {Loss Odyssey in Medical Image Segmentation},
journal = {Medical Image Analysis},
volume = {71},
pages = {102035},
year = {2021},
author = {Jun Ma and Jianan Chen and Matthew Ng and Rui Huang and Yu Li and Chen Li and Xiaoping Yang and Anne L. Martel}
doi = {https://doi.org/10.1016/j.media.2021.102035},
url = {https://www.sciencedirect.com/science/article/pii/S1361841521000815}
}

Take-home message: compound loss functions are the most robust losses, especially for the highly imbalanced segmentation tasks.

Some recent side evidence: the winner in MICCAI 2020 HECKTOR Challenge used DiceFocal loss; the winner and runner-up in MICCAI 2020 ADAM Challenge used DiceTopK loss.

Date First Author Title Conference/Journal
20210330 Suprosanna Shit and Johannes C. Paetzold clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation (keras and pytorch) CVPR 2021
20210318 Xiaoling Hu Topology-Aware Segmentation Using Discrete Morse Theory arxiv ICLR 2021
20210211 Hoel Kervadec Beyond pixel-wise supervision: semantic segmentation with higher-order shape descriptors Submitted to MIDL 2021
20210210 Rosana EL Jurdi A Surprisingly Effective Perimeter-based Loss for Medical Image Segmentation Submitted to MIDL 2021
20201222 Zeju Li Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation TMI
20210129 Nick Byrne A Persistent Homology-Based Topological Loss Function for Multi-class CNN Segmentation of Cardiac MRI arxiv STACOM 2020
20201019 Hyunseok Seo Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions TMI
20200929 Stefan Gerl A Distance-Based Loss for Smooth and Continuous Skin Layer Segmentation in Optoacoustic Images MICCAI 2020
20200821 Nick Byrne A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI arxiv STACOM
20200720 Boris Shirokikh Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation arxiv (pytorch) MICCAI 2020
20200708 Gonglei Shi Marginal loss and exclusion loss for partially supervised multi-organ segmentation (arXiv) MedIA
20200706 Yuan Lan An Elastic Interaction-Based Loss Function for Medical Image Segmentation (pytorch) (arXiv) MICCAI 2020
20200615 Tom Eelbode Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index TMI
20200605 Guotai Wang Noise-robust Dice loss: A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images (pytorch) TMI
202004 J. H. Moltz Contour Dice coefficient (CDC) Loss: Learning a Loss Function for Segmentation: A Feasibility Study ISBI
201912 Yuan Xue Shape-Aware Organ Segmentation by Predicting Signed Distance Maps (arxiv) (pytorch) AAAI 2020
201912 Xiaoling Hu Topology-Preserving Deep Image Segmentation (paper) (pytorch) NeurIPS
201910 Shuai Zhao Region Mutual Information Loss for Semantic Segmentation (paper) (pytorch) NeurIPS 2019
201910 Shuai Zhao Correlation Maximized Structural Similarity Loss for Semantic Segmentation (paper) arxiv
201908 Pierre-AntoineGanaye Removing Segmentation Inconsistencies with Semi-Supervised Non-Adjacency Constraint (paper) (official pytorch) Medical Image Analysis
201906 Xu Chen Learning Active Contour Models for Medical Image Segmentation (paper) (official-keras) CVPR 2019
20190422 Davood Karimi Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks (paper) (pytorch) TMI 201907
20190417 Francesco Caliva Distance Map Loss Penalty Term for Semantic Segmentation (paper) MIDL 2019
20190411 Su Yang Major Vessel Segmentation on X-ray Coronary Angiography using Deep Networks with a Novel Penalty Loss Function (paper) MIDL 2019
20190405 Boah Kim Multiphase Level-Set Loss for Semi-Supervised and Unsupervised Segmentation with Deep Learning (paper) arxiv
201901 Seyed Raein Hashemi Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection (paper) IEEE Access
201812 Hoel Kervadec Boundary loss for highly unbalanced segmentation (paper), (pytorch 1.0) MIDL 2019
201810 Nabila Abraham A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation (paper) (keras) ISBI 2019
201809 Fabian Isensee CE+Dice: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation (paper) arxiv
20180831 Ken C. L. Wong 3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes (paper) MICCAI 2018
20180815 Wentao Zhu Dice+Focal: AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck Anatomy (arxiv) (pytorch) Medical Physics
201806 Javier Ribera Weighted Hausdorff Distance: Locating Objects Without Bounding Boxes (paper), (pytorch) CVPR 2019
201805 Saeid Asgari Taghanaki Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation (arxiv) (keras) Computerized Medical Imaging and Graphics
201709 S M Masudur Rahman AL ARIF Shape-aware deep convolutional neural network for vertebrae segmentation (paper) MICCAI 2017 Workshop
201708 Tsung-Yi Lin Focal Loss for Dense Object Detection (paper), (code) ICCV, TPAMI
20170711 Carole Sudre Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations (paper) DLMIA 2017
20170703 Lucas Fidon Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks (paper) MICCAI 2017 BrainLes
201705 Maxim Berman The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks (paper), (code) CVPR 2018
201701 Seyed Sadegh Mohseni Salehi Tversky loss function for image segmentation using 3D fully convolutional deep networks (paper) MICCAI 2017 MLMI
201612 Md Atiqur Rahman Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation (paper) 2016 International Symposium on Visual Computing
201608 Michal Drozdzal "Dice Loss (without square)" The Importance of Skip Connections in Biomedical Image Segmentation (arxiv) DLMIA 2016
201606 Fausto Milletari "Dice Loss (with square)" V-net: Fully convolutional neural networks for volumetric medical image segmentation (arxiv), (caffe code) International Conference on 3D Vision
201605 Zifeng Wu TopK loss Bridging Category-level and Instance-level Semantic Image Segmentation (paper) arxiv
201511 Tom Brosch "Sensitivity-Specifity loss" Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation (paper) (code) MICCAI 2015
201505 Olaf Ronneberger "Weighted cross entropy" U-Net: Convolutional Networks for Biomedical Image Segmentation (paper) MICCAI 2015
201309 Gabriela Csurka What is a good evaluation measure for semantic segmentation? (paper) BMVA 2013

Most of the corresponding tensorflow code can be found here.

PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022