Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Overview

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Result

Introduction

Image super-resolution (SR) is the process of recovering high-resolution (HR) images from low-resolution (LR) images. It is an important class of image processing techniques in computer vision and image processing and enjoys a wide range of real-world applications, such as medical imaging, satellite imaging, surveillance and security, astronomical imaging, amongst others.

With the advancement in deep learning techniques in recent years, deep learning-based SR models have been actively explored and often achieve state-of-the-art performance on various benchmarks of SR. A variety of deep learning methods have been applied to solve SR tasks, ranging from the early Convolutional Neural Networks (CNN) based method to recent promising Generative Adversarial Nets based SR approaches.

A more detailed overview on single image super-resolution is given in this paper.

This repo contains a tensorflow-based implementation of:

Model Architecture

SRResNet

SRResNet adopts the design of ResNet to solve issues with training very deep models. it managed to achieve state-of-the-art performance when it came out. it contains 16 residual blocks and uses mean squared error as a loss function Here’s an overview of the SRResNet architecture:

EDSR

One super-resolution model that follows this high-level architecture is described in the paper Enhanced Deep Residual Networks for Single Image Super-Resolution (EDSR). It is a winner of the NTIRE 2017 super-resolution challenge. They further improved the performance by employing a better ResNet structure: Batch Normalization layers are removed, and instead of mean squared error, mean absolute error is used as a loss function. Here’s an overview of the EDSR architecture:

SRGAN

SRGAN further improves the results of SRResNet by fine-tuning its weights so that it can generate high frequency details in the generated image. This is done by training the model in a GAN using Perceptual loss function , which consists of two components:

  • Content Loss: compares deep features extracted from SR and HR images with a pre-trained VGG network. With φi,j we indicate the feature map obtained by the j-th convolution (after activation) before the i-th maxpooling layer within the VGG19 network

Here Wi,j and Hi,j describe the dimensions of the respective feature maps within the VGG network.

  • Adversarial Loss: The GAN descriminator D is optimized for descriminating SR from HR images whereas the generator is optimized for generating more realistic SR images in order to fool the discriminator.

Perceptual loss is the weighted sum of content loss and adversarial loss:

And here's an overview of the discriminator architecture:

This project aims to fine-tune EDSR model instead of SRResNet in the same manner.

Results

Environment setup

# using pip
pip install -r requirements.txt

# using Conda
conda create --name 
   
     --file requirements.txt

   

Training and testing

You can try training the models yourself by executing train.py

python train.py

This will download DIV2K dataset, preprocess it and start training EDSR then fine-tuning it in SRGAN.

If you want to train the model with different dataset, pass its path as an argument.

python train.py 
   

   

the dataset directory should have a 'HR' folder which contains high resolution images, and a 'LR' folder which contains low resolution images.

And if you'd like to test out model on an image, you can execute resolve_image.py and pass the image path as an argument. The output will be saved in the 'results' directory

python resolve_image.py 
   

   
Owner
Interested in Ai, machine learning and data analysis.
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023