Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

Related tags

Deep Learningnsdf
Overview

imgs/bunny.png

nsdf

Representing SDFs of arbitrary meshes has been a bit tricky so far. Expressing the mesh SDF as a combination of simpler analytical SDFs is usually not possible, but we could either use pre-computed SDF 3D textures or use acceleration structures with triangle mesh directly. The downside with those is that they're not as plug-and-play as analytical SDFs, because you need to push additional data to the shader (which is not really possible in something like Shadertoy). Wouldn't it be cool to have a way of representing a mesh SDF with just some code we can directly paste into our raymarcher, as we do with simple analytical SDFs?

Over the past few years, another promising option for representing SDFs of arbitrary meshes came to existence - neural approximations of SDFs (let's call them nsdfs):

Are these nsdfs usable outside of "lab"? The networks described in the papers are either too big (millions of parameters) to be represented purely in code, or require additional 3d textures as inputs (again millions of parameters). So, can we make them into copy-pastable distance functions which are usable in Shadertoy? Yes, yes we can:

imgs/dragon_big_loop.gif

See in action on Shadertoy

This is a quite large nsdf of Stanford dragon running in Shadertoy, at ~25fps on 3080RTX in 640x360 resolution. Not perfect, but not bad at all.

The nsdf function in shader looks something like this:

float nsdf(vec3 x) {
    vec4 x_e_0 = mat3x4(vec4(-0.6761706471443176, -0.5204018950462341, -0.725279688835144, 0.6860896944999695), vec4(0.4600033164024353, 2.345594644546509, 0.4790898859500885, -1.7588382959365845), vec4(0.0854012668132782, 0.11334510892629623, 1.3206489086151123, 1.0468124151229858)) * x * 5.0312042236328125;vec4 x_0_0 = sin(x_e_0);vec4 x_0_12 = cos(x_e_0);vec4 x_e_1 = mat3x4(vec4(-1.151658296585083, 0.3811194896697998, -1.270230770111084, -0.28512871265411377), vec4(-0.4783991575241089, 1.5332365036010742, -1.1580479145050049, -0.038533274084329605), vec4(1.764098882675171, -0.8132078647613525, 0.607886552810669, -0.9051652550697327)) .....
)

The second line continues for much, much longer and it would take up most of the space on this README.

imgs/monkey_big_loop.gif

There's actually no magic to make it work, it's enough to just train a smaller network with fourier features as inputs.

Surprisingly (not!), the smaller the network, the lower the detail of the resulting model (but on the flip side, the model looks more stylized):

  • 32 fourier features, 2 hidden layers of 16 neurons
  • should work in real time on most modern-ish gpus

imgs/bunny_small_loop.gif

  • 64 fourier features, 2 hidden layers of 64 neurons
  • 3080RTX can still run this at 60FPS at 640x360)
  • Note that it takes a few seconds to compile the shader

imgs/bunny_normal_loop.gif

  • 96 fourier features, 1 hidden layer of 96 neurons
  • ~25 fps at 640x360 on 3080RTX
  • Note that it can take tens of seconds to compile the shader

imgs/bunny_big_loop.gif

Using sigmoid as activation function

Replacing ReLU with Sigmoid as the activation function makes the model produce SDF with smoother, but less detailed surface.

imgs/bunny_normal_smooth_loop.gif

Generating your own nsdf

To generate your own nsdf, you first have to train a nsdf model:

python train.py $YOUR_MESH_FILE --output $OUTPUT_MODEL_FILE --model_size {small, normal, bigly}

Once the model is trained, you can generate GLSL nsdf function:

python generate_glsl.py $OUTPUT_MODEL_FILE

Then you can just copy-paste the generated code into your raymarcher.

WARNING: The "bigly" models can crash your browser if your gpu is not enough.

Setup

Following pip packages are required for training:

mesh-to-sdf
numpy
torch
trimesh

(you can just run pip install -r requirements.txt)

Notes:

  • The nsdf function is defined only in [-1, 1] cube, you have to handle evaluation outside of that range.
  • Related to above, I handle evaluating outside [-1, 1] cube by first checking for distance to the unit cube itself, and only after reaching that cube, nsdf is used. This has positive performance impact, so keep that in mind when reading FPS numbers above.
  • For smaller models, it might be the best to train multiple models and select the best one since there's visible variance in the quality.
Owner
Jan Ivanecky
Jan Ivanecky
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022