Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

Related tags

Deep Learningnsdf
Overview

imgs/bunny.png

nsdf

Representing SDFs of arbitrary meshes has been a bit tricky so far. Expressing the mesh SDF as a combination of simpler analytical SDFs is usually not possible, but we could either use pre-computed SDF 3D textures or use acceleration structures with triangle mesh directly. The downside with those is that they're not as plug-and-play as analytical SDFs, because you need to push additional data to the shader (which is not really possible in something like Shadertoy). Wouldn't it be cool to have a way of representing a mesh SDF with just some code we can directly paste into our raymarcher, as we do with simple analytical SDFs?

Over the past few years, another promising option for representing SDFs of arbitrary meshes came to existence - neural approximations of SDFs (let's call them nsdfs):

Are these nsdfs usable outside of "lab"? The networks described in the papers are either too big (millions of parameters) to be represented purely in code, or require additional 3d textures as inputs (again millions of parameters). So, can we make them into copy-pastable distance functions which are usable in Shadertoy? Yes, yes we can:

imgs/dragon_big_loop.gif

See in action on Shadertoy

This is a quite large nsdf of Stanford dragon running in Shadertoy, at ~25fps on 3080RTX in 640x360 resolution. Not perfect, but not bad at all.

The nsdf function in shader looks something like this:

float nsdf(vec3 x) {
    vec4 x_e_0 = mat3x4(vec4(-0.6761706471443176, -0.5204018950462341, -0.725279688835144, 0.6860896944999695), vec4(0.4600033164024353, 2.345594644546509, 0.4790898859500885, -1.7588382959365845), vec4(0.0854012668132782, 0.11334510892629623, 1.3206489086151123, 1.0468124151229858)) * x * 5.0312042236328125;vec4 x_0_0 = sin(x_e_0);vec4 x_0_12 = cos(x_e_0);vec4 x_e_1 = mat3x4(vec4(-1.151658296585083, 0.3811194896697998, -1.270230770111084, -0.28512871265411377), vec4(-0.4783991575241089, 1.5332365036010742, -1.1580479145050049, -0.038533274084329605), vec4(1.764098882675171, -0.8132078647613525, 0.607886552810669, -0.9051652550697327)) .....
)

The second line continues for much, much longer and it would take up most of the space on this README.

imgs/monkey_big_loop.gif

There's actually no magic to make it work, it's enough to just train a smaller network with fourier features as inputs.

Surprisingly (not!), the smaller the network, the lower the detail of the resulting model (but on the flip side, the model looks more stylized):

  • 32 fourier features, 2 hidden layers of 16 neurons
  • should work in real time on most modern-ish gpus

imgs/bunny_small_loop.gif

  • 64 fourier features, 2 hidden layers of 64 neurons
  • 3080RTX can still run this at 60FPS at 640x360)
  • Note that it takes a few seconds to compile the shader

imgs/bunny_normal_loop.gif

  • 96 fourier features, 1 hidden layer of 96 neurons
  • ~25 fps at 640x360 on 3080RTX
  • Note that it can take tens of seconds to compile the shader

imgs/bunny_big_loop.gif

Using sigmoid as activation function

Replacing ReLU with Sigmoid as the activation function makes the model produce SDF with smoother, but less detailed surface.

imgs/bunny_normal_smooth_loop.gif

Generating your own nsdf

To generate your own nsdf, you first have to train a nsdf model:

python train.py $YOUR_MESH_FILE --output $OUTPUT_MODEL_FILE --model_size {small, normal, bigly}

Once the model is trained, you can generate GLSL nsdf function:

python generate_glsl.py $OUTPUT_MODEL_FILE

Then you can just copy-paste the generated code into your raymarcher.

WARNING: The "bigly" models can crash your browser if your gpu is not enough.

Setup

Following pip packages are required for training:

mesh-to-sdf
numpy
torch
trimesh

(you can just run pip install -r requirements.txt)

Notes:

  • The nsdf function is defined only in [-1, 1] cube, you have to handle evaluation outside of that range.
  • Related to above, I handle evaluating outside [-1, 1] cube by first checking for distance to the unit cube itself, and only after reaching that cube, nsdf is used. This has positive performance impact, so keep that in mind when reading FPS numbers above.
  • For smaller models, it might be the best to train multiple models and select the best one since there's visible variance in the quality.
Owner
Jan Ivanecky
Jan Ivanecky
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023