A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Overview

Dying Light 2 PAKFile Utility

A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.
This tool aims to make PAKFile (.pak files) modding a breeze for both Dying Light 2 modders and mod makers.
See the roadmap for a better idea of what's to come!
More TBA Soon.

Features

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder

Known Bugs / Issues

This is a collective list of known bugs / glitches / issues.

  • None / TBA

Running the Utility

As an Executable / Binary

Step-by-step instructions to running the utility as a standalone executable.

  1. Download the Latest Release from GitHub.
  2. Save it somewhere easy to remember. A mod management folder is recommended.
  3. Right-Click the DL2-PAKFile-Utility.exe File and Select Run as Administrator
  4. Follow the On-Screen Prompts

From Source

Step-by-step instructions to running the utility from source.

  1. Open an Elevated Command Prompt
  2. Make a Virtual Environment and Activate it
  3. pip install -r requirements.txt
  4. python main.py
  5. ???
  6. $$ PROFIT $$

Making Mods

The location of the two default PAKFiles (data0.pak and data1.pak) is \steamapps\common\Dying Light 2\ph\source . Opening these PAKFiles and extracting them allows you to see all of the scripts that run in the game's engine, the C-Engine. To make a mod, extract one of these PAKFiles and then simply find the files inside of the extracted contents that include what you wish to change, modify them how you'd like, delete everything else that wasn't changed, and then build a PAKFile from that folder! To use the mod you've made, build it as dataN.pak where N is the next highest available number in your default PAKFile location (for example, if you only have data0.pak and data1.pak, you'd build a data3.pak). If other users wish to use it and they have a different number of PAKFiles than you, they may simply rename it to be a higher number in the filename.

Theory on Mod Loading Order

As writing a new mod makes use of upping the integer in the dataN.pak filenames, I'm assuming the higher the integer, the higher the order of precedence is. This is perhaps to say, for example, if one mod (data3.pak) gives unlimited stamina and another (data4.pak) removes unlimited stamina, I believe data4.pak's effects would take priority over data3.pak's and would render stamina untouched / not unlimited.

FAQ

Q1: Why does this need to be ran as an administrator?
A1: Some people store their games / mod management folders in weird places that non-elevated applications typically can't access. This is simply insurance on that possibility, making sure any user who stores their files anywhere can use this tool!
Q2: Why not opt for a better compression algorithm?
A2: This application originally used LZMA compression, which works great, but is unfortunately unsupported by C-Engine. It appears the current compression method, the default zip compression method of deflation, is the only functioning method of compressing .pak files.

Roadmap

This is a loose outline of what is in the future for the DL2 PAKFile Utility!

  • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
  • Ability to Extract PAKFiles into a Folder to Edit
  • Ability to Build a PAKFile from a Folder
  • Search PAKFiles for Specific Contents
  • GUI Integration
  • Intelligently Browse DL2 PAKFile Folder Contents (MOD MANAGER FUNCTIONALITY)
  • Detailed Documentation for both the Application and for Modding DL2
  • Auto-Updating Feature for the Utility that Pulls from GitHub
  • More Modding Tools Built-In

More to be Announced Soon!

You might also like...
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

A light-weight image labelling tool for Python designed for creating segmentation data sets.
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

Official code of
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

PyTorch Implementation of
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Releases(v0.4.6)
  • v0.4.6(Feb 11, 2022)

    v0.4.6 | General Improvements

    This release is just an update to fix some crashing issues (now gives detailed error output and won't close / exit the application) and to address the false-flagging by some anti-virus softwares of this application. It should now give 0 flags on an anti-virus, and should feel a lot smoother in terms of user experience. Also addressed was a minor formatting but when the rebuild feature has been enabled with errors giving a limit of 1-4 when the limit is 1-6 for the main menu selection integer.

    Known Issues

    There are no known issues within this release.

    Upcoming

    Full cross-platform support is planned, and the GUI is a work-in-progress! Big things are coming to this utility soon. Plans for a fully-functional and fully-featured mod loader / manager are in the works.

    Changelog

    This is what is new or different:

    • Better Error and Exception Handling (no more random crashes)
    • Fixed Integer Bounds Formatting
    • Cleanly-Built Pyinstaller Bootloader to Fix False AV Flags
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.3.9(Feb 10, 2022)

    v0.3.9 | Hotfix and Improvements

    This is a hotfix. It is intended to fix a bug with built PAKFiles not loading properly into Dying Light 2 / C-Engine. The issue was with LZMA vs Deflation compression methods. Additionally, an option to rebuild the last built .pak has been added for rapid development as you tweak the mods you're making. There won't be much in terms of information in this release, as more work is still being done for future updates. This is simply a hotfix release coupled with a feature request.

    Known Issues

    There is one main issue to be aware of for this release:
    False-Flagging for Antiviruses

    • See this link for an in-depth explanation.
    • TL;DR - a lot of people use pyinstaller, the tool used to freeze the executable, for malicious purposes. Thusly, applications built with the signature of pyinstaller may also be flagged as a virus simply by association of the method used to compile the executable.
    • This will be fixed soon once I've rewritten the pyinstaller bootloader, or possibly switched to nuitka.
    • If the issue annoys you or gives you problems, simply create an antivirus / firewall exception for the app, or build it from source yourself.

    Changelog

    This is what is new or different:

    • Application-Built PAKs Now Work Properly with Dying Light 2 / C-Engine
    • Ability to Rebuild Last PAK from Main Menu
    • Changed Icon Color to Neon Cyan for Visibility (Contrast to Dying Light 2 Game Icon)
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.29 MB)
  • v0.0.1(Feb 9, 2022)

    v0.0.1 | Initial Release

    This is an initial release. It is being released as a "beta" because it's more in a beta state and not in an ideal "release" state currently.
    By no means is it complete and / or finished. It is still lacking in a lot of ways that I wish to improve upon in the near future (see the roadmap).
    Make sure to read the instructions on how to run it before getting upset that it's "immediately closing".
    There are bound to be some bugs and errors, and I implore you to report them in this repository's issue tracker.

    Features

    With all of that being said, here is what you can expect to be working as of this release:

    • Ability to Examine PAKFiles (see size, validity, and any CRC / Header mismatch errors)
    • Ability to Extract PAKFiles into a Folder to Edit
    • Ability to Build a PAKFile from a Folder
    • Incredibly Efficient Mod Builder with 79% (21% of Original Size) LZMA Compression on the size of the mods!
    Source code(tar.gz)
    Source code(zip)
    DL2-PAKFile-Utility.exe(7.55 MB)
Owner
RHQ Online
RHQ Online.
RHQ Online
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020