A light-weight image labelling tool for Python designed for creating segmentation data sets.

Overview

django-labeller

A light-weight image labelling tool for Python designed for creating segmentation data sets.

  • compatible with Django, Flask and Qt
  • polygon, box, point and oriented ellipse annotations supported
  • polygonal labels can have disjoint regions and can be editing using paintng and boolean operations; provided by polybooljs
  • can use the DEXTR algorithm to automatically generate polygonal outlines of objects identified by the user with a few clicks; provided by the dextr library
New in v0.3: schema editor for editing label classes
Django Labeller in action:

Django labeller movie


Schema editor (new in v0.3):

Django labeller movie


Django, Flask or Qt?

If you want to run django-labeller on your local machine with minimum fuss and store the image and label files on your file system, use either the Flask application or the Qt application.

If you want to incorporate django-labeller into your Django application, use the Django app/plugin as it provides model classes that store labels in your database, etc.

Installation

If you to use the example Django application or use the provided example images, clone it from GitHub and install (recommended):

> git clone https://github.com/Britefury/django-labeller.git
> python setup.py install

To use it as a library, either with Flask or Django, install from PyPI:

> pip install django-labeller

Note:

  • pip install django-labeller[django] will also install the Django dependency
  • pip install django-labeller[dextr] will also install the dextr library

Examples

Flask web app example, running on your local machine

An example Flask-based web app is provided that displays the labelling tool within a web page. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool.flask_labeller 

Now open 127.0.0.1:5000 within a browser.

If you want to load images from a different directory, or if you installed from PyPI, tell flask_labeller where to look:

> python -m image_labelling_tool.flask_labeller --images_pat=<images_directory>/*.<jpg|png>

Flask app with DEXTR assisted labelling

First, install the dextr library:

> pip install dextr

Now tell the Flask app to enable DEXTR using the --enable_dextr option:

> python -m image_labelling_tool.flask_labeller --enable_dextr

The above will use the ResNet-101 based DEXTR model trained on Pascal VOC 2012 that is provided by the dextr library. If you want to use a custom DEXTR model that you trained for your purposes, use the --dextr_weights option:

> python -m image_labelling_tool.flask_labeller --dextr_weights=path/to/model.pth

Qt desktop application

Requirements

PyQt5 and flask need to be installed, both of which can be installed using conda if using an Anaconda distribution.
Optionally install PyTorch and the dextr library if you want to use a DEXTR model for automatically assisted annotation.

Running

A simple Qt-based desktop application allows you to choose a directory of images to label. To start it, change into the same directory into which you cloned the repo and run:

> python -m image_labelling_tool_qt.simple_labeller 

A dialog will appear prompting you to choose a directory of images to label. The Enable DEXTR checkbox will enable DEXTR assisted automated labelling. Note that this requires that PyTorch and the dextr library are both installed in your Python environment.

The Qt desktop application uses QWebEngine to show the web-based component in a Qt UI. A Flask server is started in the background that serves the tool HTML, static files and images.

Django web app example

The example Django-based web app provides a little more functionality than the Flask app. It stores the label data in a database (only SQLite in the example) and does basic image locking so that multiple users cannot work on the same image at the same time.

To initialise, first perform migrations:

> python simple_django_labeller/manage.py migrate

Now you need to import a labelling schema. Labelling schemes are stored as JSON files. For now, there is a special one called demo that you can use. Load it into a schema named default:

> python simple_django_labeller/manage.py import_schema default demo

Then populate the database with the example images in the images directory (replace images with the path of another directory if you wish to use different images):

> python simple_django_labeller/manage.py populate images

Then run the app:

> python simple_django_labeller/manage.py runserver

Django app with DEXTR assisted labelling

First, install the dextr library and celery:

> pip install dextr
> pip install celery

Now install RabbitMQ, using the appropriate approach for your platform (you could use a different Celery backend if you don't mind editing settings.py as needed).

Enable DEXTR within tests/example_labeller_app/settings.py; change the line

LABELLING_TOOL_DEXTR_AVAILABLE = False

so that LABELLING_TOOL_DEXTR_AVAILABLE is set to True.

You can also change the LABELLING_TOOL_DEXTR_WEIGHTS_PATH option to a path to a custom model, otherwise the default ResNet-101 based U-net trained on Pascal VOC 2012 provided by the dextr library will be used.

Now run the Django application:

> cd simple_django_labeller
> python manage.py runserver

Now start a celery worker:

> cd simple_django_labeller
> celery -A example_labeller_app worker -l info

Note that Celery v4 and above are not strictly compatible with Windows, but it can work if you run:

> celery -A example_labeller_app worker --pool=solo -l info

API and label access

Please see the Jupyter notebook Image labeller notebook.ipynb for API usage. It will show you how to load labels and render them into class maps, instance maps, or image stacks.

Changes

Please see the change log for recent changes.

Libraries, Credits and License

Incorporates the public domain json2.js library. Uses d3.js, jQuery, popper.js, PolyK, polybooljs, Bootstrap 4, Vue.js v3 and spectrum.js.

This software was developed by Geoffrey French in collaboration with Dr. M. Fisher and Dr. M. Mackiewicz at the School of Computing Sciences at the University of East Anglia as part of a project funded by Marine Scotland.

It is licensed under the MIT license.

AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023