This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Overview

Trivial Augment

This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is a super simple, but state-of-the-art performing, augmentation algorithm.

We distribute this implementation with two main use cases in mind. Either you only use our (re-)implementetations of practical augmentation methods or you start off with our full codebase.

Use TrivialAugment and Other Methods in Your Own Codebase

In this case we recommend to simply copy over the file aug_lib.py to your codebase. You can now instantiate the augmenters TrivialAugment, RandAugment and UniAugment like this:

augmenter = aug_lib.TrivialAugment()

And simply use them on a PIL images img:

aug_img = augmenter(img)

This format also happens to be compatible with torchvision.transforms. If you do not have Pillow or numpy installed, do so by calling pip install Pillow numpy. Generally, a good position to augment an image with the augmenter is right as you get it out of the dataset, before you apply any custom augmentations.

The default augmentation space is fixed_standard, that is without AutoAugments posterization bug and using the set of augmentations used in Randaugment. This is the search space we used for all our experiments, that do not mention another augmentation space. You can change the augmentation space, though, with aug_lib.set_augmentation_space. This call for example

aug_lib.set_augmentation_space('fixed_custom',2,['cutout'])

will change the augmentation space to only ever apply cutout with a large width or nothing. The 2 here gives indications in how many strength levels the strength ranges of the augmentation space should be divided. If an augmentation space includes sample_pairing, you need to specify a set of images with which to pair before each step: aug_lib.blend_images = [LIST OF PIL IMAGES].

Our recommendation is to use the default fixed_standard search space for very cheap setups, like Wide-Resnet-40-2, and to use wide_standard for all other setups by calling aug_lib.set_augmentation_space('wide_standard',31) before the start of training.

Use Our Full Codebase

Clone this directory and cd into it.

git clone automl/trivialaugment
cd trivialaugment

Install a fitting PyTorch version for your setup with GPU support, as our implementation only support setups with at least one CUDA device and install our requirements:

pip install -r requirements.txt
# Install a pytorch version, in many setups this has to be done manually, see pytorch.org

Now you should be ready to go. Start a training like so:

python -m TrivialAugment.train -c confs/wresnet40x2_cifar100_b128_maxlr.1_ta_fixedsesp_nowarmup_200epochs.yaml --dataroot data --tag EXPERIMENT_NAME

For concrete configs of experiments from the paper see the comments in the papers LaTeX code around the number you want to reproduce. For logs and metrics use a tensorboard with the logs directory or use our aggregate_results.py script to view data from the tensorboard logs in the command line.

Confidence Intervals

Since in the current literature we rarely found confidence intervals, we share our implementation in evaluation_tools.py.

This repository uses code from https://github.com/ildoonet/pytorch-randaugment and from https://github.com/tensorflow/models/tree/master/research/autoaugment.

Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022