CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

Overview

This is the official repository of the paper:

CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability


A private copy of the paper is available under CR-FIQA


CR-FIQA training

  1. In the paper, we employ MS1MV2 as the training dataset for CR-FIQA(L) which can be downloaded from InsightFace (MS1M-ArcFace in DataZoo)
    1. Download MS1MV2 dataset from insightface on strictly follow the licence distribution
  2. We use CASIA-WebFace as the training dataset for CR-FIQA(S) which can be downloaded from InsightFace (CASIA in DataZoo)
    1. Download CASIA dataset from insightface on strictly follow the licence distribution
  3. Unzip the dataset and place it in the data folder
  4. Intall the requirement from requirement.txt
  5. pip install -r requirements.txt
  6. All code are trained and tested using PyTorch 1.7.1 Details are under (Torch)[https://pytorch.org/get-started/locally/]

CR-FIQA(L)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet100"
  3. config.dataset = "emoreIresNet"
  4. Run ./run.sh

CR-FIQA(S)

Set the following in the config.py

  1. config.output to output dir
  2. config.network = "iresnet50"
  3. config.dataset = "webface"
  4. Run ./run.sh

Pretrained model

CR-FIQA(L)

CR-FIQA(S)

Evaluation

Follow these steps to reproduce the results on XQLFW:

  1. Download the XQLFW (please download xqlfw_aligned_112.zip)
  2. Unzip XQLFW (Folder structure should look like this ./data/XQLFW/xqlfw_aligned_112/)
  3. Download also xqlfw_pairs.txt to ./data/XQLFW/xqlfw_pairs.txt
  4. Set (in feature_extraction/extract_xqlfw.py) path = "./data/XQLFW" to your XQLFW data folder and outpath = "./data/quality_data" where you want to save the preprocessed data
  5. Run python extract_xqlfw.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  6. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

The quality score of LFW, AgeDB-30, CFP-FP, CALFW, CPLFW can be produced by following these steps:

  1. LFW, AgeDB-30, CFP-FP, CALFW, CPLFW are be included in the training dataset folder insightface
  2. Set (in extract_bin.py) path = "/data/faces_emore/lfw.bin" to your LFW bin file and outpath = "./data/quality_data" where you want to save the preprocessed data (subfolder will be created)
  3. Run python extract_bin.py (it creates the output folder, saves the images in BGR format, creates image_path_list.txt and pair_list.txt)
  4. Run evaluation/getQualityScore.py to estimate the quality scores
    1. CR-FIQA(L)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet100" --model_id "181952" --score_file_name "CRFIQAL.txt"
    2. CR-FIQA(S)
      1. Download the pretrained model
      2. run: python3 evaluation/getQualityScorce.py --data_dir "./data/quality_data" --datasets "XQLFW" --model_path "path_to_pretrained_CF_FIQAL_model" --backbone "iresnet50" --model_id "32572" --score_file_name "CRFIQAS.txt"

Ploting ERC curves

  1. Download pretrained model e.g. ElasticFace-Arc, MagFac, CurricularFace or ArcFace
  2. Run CUDA_VISIBLE_DEVICES=0 python feature_extraction/extract_emb.py --model_path ./pretrained/ElasticFace --model_id 295672 --dataset_path "./data/quality_data/XQLFW" --modelname "ElasticFaceModel" 2.1 Note: change the path to pretrained model and other arguments according to the evaluated model
  3. Run python3 ERC/erc.py (details in ERC/README.md)

Citation

If you use any of the code provided in this repository or the models provided, please cite the following paper:

@misc{fboutros_CR_FIQA,
      title={CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability}, 
      author={Fadi Boutros, Meiling Fang, Marcel Klemt, Biying Fu, Naser Damer},
      year={2021},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Fadi Boutros
Fadi Boutros
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

9 Oct 31, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022