DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

Overview

DiffWave

PyPI Release License

DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via iterative refinement. The speech can be controlled by providing a conditioning signal (e.g. log-scaled Mel spectrogram). The model and architecture details are described in DiffWave: A Versatile Diffusion Model for Audio Synthesis.

What's new (2021-11-09)

  • unconditional waveform synthesis (thanks to Andrechang!)

What's new (2021-04-01)

  • fast sampling algorithm based on v3 of the DiffWave paper

What's new (2020-10-14)

  • new pretrained model trained for 1M steps
  • updated audio samples with output from new model

Status (2021-11-09)

  • fast inference procedure
  • stable training
  • high-quality synthesis
  • mixed-precision training
  • multi-GPU training
  • command-line inference
  • programmatic inference API
  • PyPI package
  • audio samples
  • pretrained models
  • unconditional waveform synthesis

Big thanks to Zhifeng Kong (lead author of DiffWave) for pointers and bug fixes.

Audio samples

22.05 kHz audio samples

Pretrained models

22.05 kHz pretrained model (31 MB, SHA256: d415d2117bb0bba3999afabdd67ed11d9e43400af26193a451d112e2560821a8)

This pre-trained model is able to synthesize speech with a real-time factor of 0.87 (smaller is faster).

Pre-trained model details

  • trained on 4x 1080Ti
  • default parameters
  • single precision floating point (FP32)
  • trained on LJSpeech dataset excluding LJ001* and LJ002*
  • trained for 1000578 steps (1273 epochs)

Install

Install using pip:

pip install diffwave

or from GitHub:

git clone https://github.com/lmnt-com/diffwave.git
cd diffwave
pip install .

Training

Before you start training, you'll need to prepare a training dataset. The dataset can have any directory structure as long as the contained .wav files are 16-bit mono (e.g. LJSpeech, VCTK). By default, this implementation assumes a sample rate of 22.05 kHz. If you need to change this value, edit params.py.

python -m diffwave.preprocess /path/to/dir/containing/wavs
python -m diffwave /path/to/model/dir /path/to/dir/containing/wavs

# in another shell to monitor training progress:
tensorboard --logdir /path/to/model/dir --bind_all

You should expect to hear intelligible (but noisy) speech by ~8k steps (~1.5h on a 2080 Ti).

Multi-GPU training

By default, this implementation uses as many GPUs in parallel as returned by torch.cuda.device_count(). You can specify which GPUs to use by setting the CUDA_DEVICES_AVAILABLE environment variable before running the training module.

Inference API

Basic usage:

from diffwave.inference import predict as diffwave_predict

model_dir = '/path/to/model/dir'
spectrogram = # get your hands on a spectrogram in [N,C,W] format
audio, sample_rate = diffwave_predict(spectrogram, model_dir, fast_sampling=True)

# audio is a GPU tensor in [N,T] format.

Inference CLI

python -m diffwave.inference --fast /path/to/model /path/to/spectrogram -o output.wav

References

Owner
LMNT
LMNT
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022