Official Pytorch implementation of RePOSE (ICCV2021)

Related tags

Deep LearningRePOSE
Overview

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link]

overview

Abstract

We present RePOSE, a fast iterative refinement method for 6D object pose estimation. Prior methods perform refinement by feeding zoomed-in input and rendered RGB images into a CNN and directly regressing an update of a refined pose. Their runtime is slow due to the computational cost of CNN, which is especially prominent in multiple-object pose refinement. To overcome this problem, RePOSE leverages image rendering for fast feature extraction using a 3D model with a learnable texture. We call this deep texture rendering, which uses a shallow multi-layer perceptron to directly regress a view-invariant image representation of an object. Furthermore, we utilize differentiable Levenberg-Marquardt (LM) optimization to refine a pose fast and accurately by minimizing the feature-metric error between the input and rendered image representations without the need of zooming in. These image representations are trained such that differentiable LM optimization converges within few iterations. Consequently, RePOSE runs at 92 FPS and achieves state-of-the-art accuracy of 51.6% on the Occlusion LineMOD dataset - a 4.1% absolute improvement over the prior art, and comparable result on the YCB-Video dataset with a much faster runtime.

Prerequisites

  • Python >= 3.6
  • Pytorch == 1.9.0
  • Torchvision == 0.10.0
  • CUDA == 10.1

Downloads

Installation

  1. Set up the python environment:
    $ pip install torch==1.9.0 torchvision==0.10.0
    $ pip install Cython==0.29.17
    $ sudo apt-get install libglfw3-dev libglfw3
    $ pip install -r requirements.txt
    
    # Install Differentiable Renderer
    $ cd renderer
    $ python3 setup.py install
    
  2. Compile cuda extensions under lib/csrc:
    ROOT=/path/to/RePOSE
    cd $ROOT/lib/csrc
    export CUDA_HOME="/usr/local/cuda-10.1"
    cd ../ransac_voting
    python setup.py build_ext --inplace
    cd ../camera_jacobian
    python setup.py build_ext --inplace
    cd ../nn
    python setup.py build_ext --inplace
    cd ../fps
    python setup.py
    
  3. Set up datasets:
    $ ROOT=/path/to/RePOSE
    $ cd $ROOT/data
    
    $ ln -s /path/to/linemod linemod
    $ ln -s /path/to/linemod_orig linemod_orig
    $ ln -s /path/to/occlusion_linemod occlusion_linemod
    
    $ cd $ROOT/data/model/
    $ unzip pretrained_models.zip
    
    $ cd $ROOT/cache/LinemodTest
    $ unzip ape.zip benchvise.zip .... phone.zip
    $ cd $ROOT/cache/LinemodOccTest
    $ unzip ape.zip can.zip .... holepuncher.zip
    

Testing

We have 13 categories (ape, benchvise, cam, can, cat, driller, duck, eggbox, glue, holepuncher, iron, lamp, phone) on the LineMOD dataset and 8 categories (ape, can, cat, driller, duck, eggbox, glue, holepuncher) on the Occlusion LineMOD dataset. Please choose the one category you like (replace ape with another category) and perform testing.

Evaluate the ADD(-S) score

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Test:
    # Test on the LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Test on the Occlusion LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Visualization

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Visualize:
    # Visualize the results of the LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Visualize the results of the Occlusion LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Citation

@InProceedings{Iwase_2021_ICCV,
    author    = {Iwase, Shun and Liu, Xingyu and Khirodkar, Rawal and Yokota, Rio and Kitani, Kris M.},
    title     = {RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {3303-3312}
}

Acknowledgement

Our code is largely based on clean-pvnet and our rendering code is based on neural_renderer. Thank you so much for making these codes publicly available!

Contact

If you have any questions about the paper and implementation, please feel free to email me ([email protected])! Thank you!

Owner
Shun Iwase
Carnegie Mellon University, Robotics Institute
Shun Iwase
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022