Tensors and neural networks in Haskell

Overview

Hasktorch

Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.

This project is in active development, so expect changes to the library API as it evolves. We would like to invite new users to join our Hasktorch slack space for questions and discussions. Contributions/PR are encouraged.

Currently we are developing the second major release of Hasktorch (0.2). Note the 1st release, Hasktorch 0.1, on hackage is outdated and should not be used.

Documentation

The documentation is divided into several sections:

Introductory Videos

Getting Started

The following steps will get you started. They assume the hasktorch repository has just been cloned. After setup is done, read the online tutorials and API documents.

linux+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+cabal+cuda11

Starting from the top-level directory of the project, run:

$ pushd deps              # Change to the deps directory and save the current directory.
$ ./get-deps.sh -a cu111  # Run the shell script to retrieve the libtorch dependencies.
$ popd                    # Go back to the root directory of the project.
$ source setenv           # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh        # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

macos+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

macos+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

nixos+cabal+cpu

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

nixos+cabal+cuda11

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell --arg cudaSupport true --argstr cudaMajorVersion 11  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

docker+jupyterlab+cuda11

This dockerhub repository provides the docker-image of jupyterlab. It supports cuda11, cuda10 and cpu only. When you use jupyterlab with hasktorch, type following command, then click a url in a console.

$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter
or
$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter:latest-cu11

Known Issues

Tensors Cannot Be Moved to CUDA

In rare cases, you may see errors like

cannot move tensor to "CUDA:0"

although you have CUDA capable hardware in your machine and have followed the getting-started instructions for CUDA support.

If that happens, check if /run/opengl-driver/lib exists. If not, make sure your CUDA drivers are installed correctly.

Weird Behaviour When Switching from CPU-Only to CUDA-Enabled Nix Shell

If you have run cabal in a CPU-only Hasktorch Nix shell before, you may need to:

  • Clean the dist-newstyle folder using cabal clean.
  • Delete the .ghc.environment* file in the Hasktorch root folder.

Otherwise, at best, you will not be able to move tensors to CUDA, and, at worst, you will see weird linker errors like

gcc: error: hasktorch/dist-newstyle/build/x86_64-linux/ghc-8.8.3/libtorch-ffi-1.5.0.0/build/Torch/Internal/Unmanaged/Autograd.dyn_o: No such file or directory
`cc' failed in phase `Linker'. (Exit code: 1)

Contributing

We welcome new contributors.

Contact us for access to the hasktorch slack channel. You can send an email to [email protected] or on twitter as @austinvhuang, @SamStites, @tscholak, or @junjihashimoto3.

Notes for library developers

See the wiki for developer notes.

Project Folder Structure

Basic functionality:

  • deps/ - submodules and downloads for build dependencies (libtorch, mklml, pytorch) -- you can ignore this if you are on Nix
  • examples/ - high level example models (xor mlp, typed cnn, etc.)
  • experimental/ - experimental projects or tips
  • hasktorch/ - higher level user-facing library, calls into ffi/, used by examples/

Internals (for contributing developers):

  • codegen/ - code generation, parses Declarations.yaml spec from pytorch and produces ffi/ contents
  • inline-c/ - submodule to inline-cpp fork used for C++ FFI
  • libtorch-ffi/- low level FFI bindings to libtorch
  • spec/ - specification files used for codegen/
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022