Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Related tags

Deep Learninghydra
Overview

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Paper

Overview

Hydra is a state-of-the-art fuzzing framework for file systems. It provides building blocks for file system fuzzing, including multi-dimensional input mutators, feedback engines, a libOS-based executor, and a bug reproducer with test case minimizer. Developers only need to focus on writing (or bringing in) a checker which defines the core logic for finding the types of bugs of their own interests. Along with the framework, this repository includes our in-house developed crash consistency checker (SymC3), with which 11 new crash consistency bugs were revealed from ext4, Btrfs, F2FS, and from two verified file systems: FSCQ and Yxv6.

Contents

  • General code base

    • src/combined: Hydra input mutator
    • src/lkl/tools/lkl/{FS}-combined-consistency: Hydra LibOS-based Executor (will be downloaded and compiled during setup)
  • Checkers

    • src/emulator: Hydra's in-house crash consistency checker, SymC3

Setup

1. All setup should be done under src

$ cd src

2. Install dependencies

./dep.sh

3. Compile for each file system

$ make build-btrfs-imgwrp
  • We can do the same for other file systems:
$ make build-ext4-imgwrp
$ make build-f2fs-imgwrp
$ make build-xfs-imgwrp
  • (Skip if you want to test the latest kernel) To reproduce bugs presented in the SOSP'19 paper, do the following to back-port LKL to kernel 4.16.
$ cd lkl (pwd: proj_root/src/lkl) # assuming that you are in the src directory
$ make mrproper
$ git pull
$ git checkout v4.16-backport
$ ./compile -t btrfs
$ cd .. (pwd: proj_root/src)

4. Set up environments

$ sudo ./prepare_fuzzing.sh
$ ./prepare_env.sh

5. Run fuzzing (single / multiple instance)

  • Single instance
$ ./run.py -t [fstype] -c [cpu_id] -l [tmpfs_id] -g [fuzz_group]

-t: choose from btrfs, f2fs, ext4, xfs
-c: cpu id to run this fuzzer instance
-l: tmpfs id to store logs (choose one from /tmp/mosbench/tmpfs-separate/)
-g: specify group id for parallel fuzzing, default: 0

e.g., ./run.py -t btrfs -c 4 -l 10 -g 1
Runs btrfs fuzzer, and pins the instance to Core #4.
Logs will be accumulated under /tmp/mosbench/tmpfs-separate/10/log/ .
  • You can also run multiple fuzzers in parallel by doing:
[Terminal 1] ./run.py -t btrfs -c 1 -l 10 -g 1
[Terminal 2] ./run.py -t btrfs -c 2 -l 10 -g 1
[Terminal 3] ./run.py -t btrfs -c 3 -l 10 -g 1
[Terminal 4] ./run.py -t btrfs -c 4 -l 10 -g 1
// all btrfs bug logs will be under /tmp/mosbench/tmpfs-separate/10/log/

[Terminal 5] ./run.py -t f2fs -c 5 -l 11 -g 2
[Terminal 6] ./run.py -t f2fs -c 6 -l 11 -g 2
[Terminal 7] ./run.py -t f2fs -c 7 -l 11 -g 2
[Terminal 8] ./run.py -t f2fs -c 8 -l 11 -g 2
// all f2fs bug logs will be under /tmp/mosbench/tmpfs-separate/11/log/

6. Important note

It is highly encouraged that you use separate input, output, log directories for each file system, unless you are running fuzzers in parallel. If you reuse the same directories from previous testings of other file systems, it won't work properly.

7. Experiments

Please refer to EXPERIMENTS.md for detailed experiment information.

Contacts

Owner
gts3.org ([email protected])
https://gts3.org
gts3.org (<a href=[email protected])">
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
TensorFlow GNN is a library to build Graph Neural Networks on the TensorFlow platform.

TensorFlow GNN This is an early (alpha) release to get community feedback. It's under active development and we may break API compatibility in the fut

889 Dec 30, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023