Hard cater examples from Hopper ICLR paper

Related tags

Deep Learningcater-h
Overview

CATER-h NEC Laboratories America, Inc.

Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf

(*Contact: [email protected])

CATER-h is the dataset proposed for the Video Reasoning task, specifically, the problem of Object Permanence, investigated in Hopper: Multi-hop Transformer for Spatiotemporal Reasoning accepted to ICLR 2021. Please refer to our full paper for detailed analysis and evaluations.

1. Overview

This repository provides the CATER-h dataset used in the paper "Hopper: Multi-hop Transformer for Spatiotemporal Reasoning", as well as instructions/code to create the CATER-h dataset.

If you find the dataset or the code helpful, please cite:

Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf. Hopper: Multi-hop Transformer for Spatiotemporal Reasoning. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{zhou2021caterh,
    title = {{Hopper: Multi-hop Transformer for Spatiotemporal Reasoning}},
    author = {Zhou, Honglu and Kadav, Asim and Lai, Farley and Niculescu-Mizil, Alexandru and Min, Martin Renqiang and Kapadia, Mubbasir and Graf, Hans Peter},
    booktitle = {ICLR},
    year = 2021
}  

2. Dataset

A pre-generated sample of the dataset used in the paper is provided here. If you'd like to generate a version of the dataset, please follow instructions in the following.

3. Requirements

  1. All CLEVR requirements (eg, Blender: the code was used with v2.79b).
  2. This code was used on Linux machines.
  3. GPU: This code was tested with multiple types of GPUs and should be compatible with most GPUs. By default it will use all the GPUs on the machine.
  4. All DETR requirements. You can check the site-packages of our conda environment (Python3.7.6) used.

4. Generating CATER-h

4.1 Generating videos and labels

(We modify code provided by CATER.)

  1. cd generate/

  2. echo $PWD >> blender-2.79b-linux-glibc219-x86_64/2.79/python/lib/python3.5/site-packages/clevr.pth (You can download our blender-2.79b-linux-glibc219-x86_64.)

  3. Run time python launch.py to start generating. Please read through the script to change any settings, paths etc. The command line options should also be easy to follow from the script (e.g., --num_images specifies the number of videos to generate).

  4. time python gen_train_test.py to generate labels for the dataset for each of the tasks. Change the parameters on the top of the file, and run it.

4.2 Obtaining frame and object features

You can find our extracted frame and object features here. The CNN backbone we utilized to obtain the frame features is a pre-trained ResNeXt-101 model. We use DETR trained on the LA-CATER dataset to obtain object features.

4.3 Filtering data by the frame index of the last visible snitch

  1. cd extract/

  2. Download our pretrained object detector from here. Create a folder checkpoints. Put the pretrained object detector into the folder checkpoints.

  3. Change paths etc in extract/configs/CATER-h.yml

  4. time ./run.sh

This will generate an output folder with pickle files that save the frame index of the last visible snitch and the detector's confidence.

  1. Run resample.ipynb which will resample the data to have balanced train/val set in terms of the class label and the frame index of the last visible snitch.

Acknowledgments

The code in this repository is heavily based on the following publically available implementations:

Owner
NECLA ML Group
NEC Labs America, Machine Learning Group
NECLA ML Group
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022