CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Overview

CondenseNetV2

This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Yang*, Haojun Jiang*, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang and Qi Tian (* Authors contributed equally).

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Contacts

Introduction

Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet has shown that this mechanism can be further improved if redundant features are removed. In this paper, we propose an alternative approach named sparse feature reactivation (SFR), aiming at actively increasing the utility of features for reusing. In the proposed network, named CondenseNetV2, each layer can simultaneously learn to 1) selectively reuse a set of most important features from preceding layers; and 2) actively update a set of preceding features to increase their utility for later layers. Our experiments show that the proposed models achieve promising performance on image classification (ImageNet and CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency and practical speed.

Usage

Dependencies

Training

As an example, use the following command to train a CondenseNetV2-A/B/C on ImageNet

python -m torch.distributed.launch --nproc_per_node=8 train.py --model cdnv2_a/b/c 
  --batch-size 1024 --lr 0.4 --warmup-lr 0.1 --warmup-epochs 5 --opt sgd --sched cosine \
  --epochs 350 --weight-decay 4e-5 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 \
  --data_url /PATH/TO/IMAGENET --train_url /PATH/TO/LOG_DIR

Evaluation

We take the ImageNet model trained above as an example.

To evaluate the non-converted trained model, use test.py to evaluate from a given checkpoint path:

python test.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

To evaluate the converted trained model, use --model converted_cdnv2_a/b/c:

python test.py --model converted_cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

Note that these models are still the large models after training. To convert the model to standard group-convolution version as described in the paper, use the convert_and_eval.py:

python convert_and_eval.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 64 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --convert_from /PATH/TO/MODEL_WEIGHT

Results

Results on ImageNet

Model FLOPs Params Top-1 Error Tsinghua Cloud Google Drive
CondenseNetV2-A 46M 2.0M 35.6 Download Download
CondenseNetV2-B 146M 3.6M 28.1 Download Download
CondenseNetV2-C 309M 6.1M 24.1 Download Download

Results on COCO2017 Detection

Detection Framework Backbone Backbone FLOPs mAP
FasterRCNN ShuffleNetV2 0.5x 41M 22.1
FasterRCNN CondenseNetV2-A 46M 23.5
FasterRCNN ShuffleNetV2 1.0x 146M 27.4
FasterRCNN CondenseNetV2-B 146M 27.9
FasterRCNN MobileNet 1.0x 300M 30.6
FasterRCNN ShuffleNetV2 1.5x 299M 30.2
FasterRCNN CondenseNetV2-C 309M 31.4
RetinaNet MobileNet 1.0x 300M 29.7
RetinaNet ShuffleNetV2 1.5x 299M 29.1
RetinaNet CondenseNetV2-C 309M 31.7

Results on CIFAR

Model FLOPs Params CIFAR-10 CIFAR-100
CondenseNet-50 28.6M 0.22M 6.22 -
CondenseNet-74 51.9M 0.41M 5.28 -
CondenseNet-86 65.8M 0.52M 5.06 23.64
CondenseNet-98 81.3M 0.65M 4.83 -
CondenseNet-110 98.2M 0.79M 4.63 -
CondenseNet-122 116.7M 0.95M 4.48 -
CondenseNetV2-110 41M 0.48M 4.65 23.94
CondenseNetV2-146 62M 0.78M 4.35 22.52

Contacts

[email protected] [email protected]

Any discussions or concerns are welcomed!

Citation

If you find our project useful in your research, please consider citing:

@inproceedings{yang2021condensenetv2,
  title={CondenseNet V2: Sparse Feature Reactivation for Deep Networks},
  author={Yang, Le and Jiang, Haojun and Cai, Ruojin and Wang, Yulin and Song, Shiji and Huang, Gao and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4321--4330},
  year={2021}
}
Owner
Haojun Jiang
Now a first year PhD in the Department of Automation. My research interest lies in Computer Vision .
Haojun Jiang
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022