CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Overview

CondenseNetV2

This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Yang*, Haojun Jiang*, Ruojin Cai, Yulin Wang, Shiji Song, Gao Huang and Qi Tian (* Authors contributed equally).

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Contacts

Introduction

Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet has shown that this mechanism can be further improved if redundant features are removed. In this paper, we propose an alternative approach named sparse feature reactivation (SFR), aiming at actively increasing the utility of features for reusing. In the proposed network, named CondenseNetV2, each layer can simultaneously learn to 1) selectively reuse a set of most important features from preceding layers; and 2) actively update a set of preceding features to increase their utility for later layers. Our experiments show that the proposed models achieve promising performance on image classification (ImageNet and CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency and practical speed.

Usage

Dependencies

Training

As an example, use the following command to train a CondenseNetV2-A/B/C on ImageNet

python -m torch.distributed.launch --nproc_per_node=8 train.py --model cdnv2_a/b/c 
  --batch-size 1024 --lr 0.4 --warmup-lr 0.1 --warmup-epochs 5 --opt sgd --sched cosine \
  --epochs 350 --weight-decay 4e-5 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 \
  --data_url /PATH/TO/IMAGENET --train_url /PATH/TO/LOG_DIR

Evaluation

We take the ImageNet model trained above as an example.

To evaluate the non-converted trained model, use test.py to evaluate from a given checkpoint path:

python test.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

To evaluate the converted trained model, use --model converted_cdnv2_a/b/c:

python test.py --model converted_cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 32 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --evaluate_from /PATH/TO/MODEL_WEIGHT

Note that these models are still the large models after training. To convert the model to standard group-convolution version as described in the paper, use the convert_and_eval.py:

python convert_and_eval.py --model cdnv2_a/b/c \
  --data_url /PATH/TO/IMAGENET -b 64 -j 8 \
  --train_url /PATH/TO/LOG_DIR \
  --convert_from /PATH/TO/MODEL_WEIGHT

Results

Results on ImageNet

Model FLOPs Params Top-1 Error Tsinghua Cloud Google Drive
CondenseNetV2-A 46M 2.0M 35.6 Download Download
CondenseNetV2-B 146M 3.6M 28.1 Download Download
CondenseNetV2-C 309M 6.1M 24.1 Download Download

Results on COCO2017 Detection

Detection Framework Backbone Backbone FLOPs mAP
FasterRCNN ShuffleNetV2 0.5x 41M 22.1
FasterRCNN CondenseNetV2-A 46M 23.5
FasterRCNN ShuffleNetV2 1.0x 146M 27.4
FasterRCNN CondenseNetV2-B 146M 27.9
FasterRCNN MobileNet 1.0x 300M 30.6
FasterRCNN ShuffleNetV2 1.5x 299M 30.2
FasterRCNN CondenseNetV2-C 309M 31.4
RetinaNet MobileNet 1.0x 300M 29.7
RetinaNet ShuffleNetV2 1.5x 299M 29.1
RetinaNet CondenseNetV2-C 309M 31.7

Results on CIFAR

Model FLOPs Params CIFAR-10 CIFAR-100
CondenseNet-50 28.6M 0.22M 6.22 -
CondenseNet-74 51.9M 0.41M 5.28 -
CondenseNet-86 65.8M 0.52M 5.06 23.64
CondenseNet-98 81.3M 0.65M 4.83 -
CondenseNet-110 98.2M 0.79M 4.63 -
CondenseNet-122 116.7M 0.95M 4.48 -
CondenseNetV2-110 41M 0.48M 4.65 23.94
CondenseNetV2-146 62M 0.78M 4.35 22.52

Contacts

[email protected] [email protected]

Any discussions or concerns are welcomed!

Citation

If you find our project useful in your research, please consider citing:

@inproceedings{yang2021condensenetv2,
  title={CondenseNet V2: Sparse Feature Reactivation for Deep Networks},
  author={Yang, Le and Jiang, Haojun and Cai, Ruojin and Wang, Yulin and Song, Shiji and Huang, Gao and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4321--4330},
  year={2021}
}
Owner
Haojun Jiang
Now a first year PhD in the Department of Automation. My research interest lies in Computer Vision .
Haojun Jiang
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022