SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

Related tags

Deep LearningSCALoss
Overview

SCALoss

PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022).

Introduction

corner_center_comp

  • IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes with slow convergence speed.
  • Side Overlap can put more penalty for low overlapping bounding box cases and Corner Distance can speed up the convergence.
  • SCALoss, which combines Side Overlap and Corner Distance, can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed.

Prerequisites

Install

Conda is not necessary for the installation. Nevertheless, the installation process here is described using it.

$ conda create -n sca-yolo python=3.8 -y
$ conda activate sca-yolo
$ git clone https://github.com/Turoad/SCALoss
$ cd SCALoss
$ pip install -r requirements.txt

Getting started

Train a model:

python train.py --data [dataset config] --cfg [model config] --weights [path of pretrain weights] --batch-size [batch size num]

For example, to train yolov3-tiny on COCO dataset from scratch with batch size=128.

python train.py --data coco.yaml --cfg yolov3-tiny.yaml --weights '' --batch-size 128

For multi-gpu training, it is recommended to use:

python -m torch.distributed.launch --nproc_per_node 4 train.py --img 640 --batch 32 --epochs 300 --data coco.yaml --weights '' --cfg yolov3.yaml --device 0,1,2,3

Test a model:

python val.py --data coco.yaml --weights runs/train/exp15/weights/last.pt --img 640 --iou-thres=0.65

Results and Checkpoints

YOLOv3-tiny

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 18.8 36.2 27.2 17.3 11.6 1.9
GIoU
relative improv.(%)
18.8
0%
36.2
0%
27.1
-0.37%
17.6
1.73%
11.8
1.72%
2.1
10.53%
DIoU
relative improv.(%)
18.8
0%
36.4
0.55%
26.9
-1.1%
17.2
-0.58%
11.8
1.72%
1.9
0%
CIoU
relative improv.(%)
18.9
0.53%
36.6
1.1%
27.3
0.37%
17.2
-0.58%
11.6
0%
2.1
10.53%
SCA
relative improv.(%)
19.9
5.85%
36.6
1.1%
28.3
4.04%
19.1
10.4%
13.3
14.66%
2.7
42.11%

The convergence curves of different losses on YOLOV3-tiny: converge curve

YOLOv3

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 44.8 64.2 57.5 48.8 41.8 20.7
GIoU
relative improv.(%)
44.7
-0.22%
64.4
0.31%
57.5
0%
48.5
-0.61%
42
0.48%
20.4
-1.45%
DIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
42.1
0.72%
19.8
-4.35%
CIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
41.7
-0.24%
19.8
-4.35%
SCA
relative improv.(%)
45.3
1.12%
64.1
-0.16%
57.9
0.7%
49.9
2.25%
43.3
3.59%
21.4
3.38%

YOLOV5s

comming soon

Citation

If our paper and code are beneficial to your work, please consider citing:

@inproceedings{zheng2022scaloss,
  title={SCALoss: Side and Corner Aligned Loss for Bounding Box Regression},
  author={Zheng, Tu and Zhao, Shuai and Liu, Yang and Liu, Zili and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Acknowledgement

The code is modified from ultralytics/yolov3.

You might also like...
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Official PyTorch implementation of
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Owner
TuZheng
TuZheng
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022