[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

Overview

OpenCOOD

Documentation Status License: MIT

OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV2V.

News

03/17/2022: V2VNet is supported and the results/trained model are provided in the benchmark table.

03/10/2022: Results and pretrained weights for Attentive Fusion with compression are provided.

02/20/2022: F-Cooper now is supported and the results/traiend model can be found in the benchmark table.

01/31/2022: Our paper OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication has been accpted by ICRA2022!

09/21/2021: OPV2V dataset is public available: https://mobility-lab.seas.ucla.edu/opv2v/

Features

  • Provide easy data API for the Vehicle-to-Vehicle (V2V) multi-modal perception dataset OPV2V

    It currently provides easy API to load LiDAR data from multiple agents simultaneously in a structured format and convert to PyTorch Tesnor directly for model use.

  • Provide multiple SOTA 3D detection backbone

    It supports state-of-the-art LiDAR detector including PointPillar, Pixor, VoxelNet, and SECOND.

  • Support most common fusion strategies

    It includes 3 most common fusion strategies: early fusion, late fusion, and intermediate fusion across different agents.

  • Support several SOTA multi-agent visual fusion model

    It supports the most recent multi-agent perception algorithms (currently up to Sep. 2021) including Attentive Fusion, Cooper (early fusion), F-Cooper, V2VNet etc. We will keep updating the newest algorithms.

  • Provide a convenient log replay toolbox for OPV2V dataset (coming soon)

    It also provides an easy tool to replay the original OPV2V dataset. More importantly, it allows users to enrich the original dataset by attaching new sensors or define additional tasks (e.g. tracking, prediction) without changing the events in the initial dataset (e.g. positions and number of all vehicles, traffic speed).

Data Downloading

All the data can be downloaded from google drive. If you have a good internet, you can directly download the complete large zip file such as train.zip. In case you suffer from downloading large fiels, we also split each data set into small chunks, which can be found in the directory ending with _chunks, such as train_chunks. After downloading, please run the following command to each set to merge those chunks together:

cat train.zip.parta* > train.zip
unzip train.zip

Installation

Please refer to data introduction and installation guide to prepare data and install OpenCOOD. To see more details of OPV2V data, please check our website.

Quick Start

Data sequence visualization

To quickly visualize the LiDAR stream in the OPV2V dataset, first modify the validate_dir in your opencood/hypes_yaml/visualization.yaml to the opv2v data path on your local machine, e.g. opv2v/validate, and the run the following commond:

cd ~/OpenCOOD
python opencood/visualization/vis_data_sequence.py [--color_mode ${COLOR_RENDERING_MODE}]

Arguments Explanation:

  • color_mode : str type, indicating the lidar color rendering mode. You can choose from 'constant', 'intensity' or 'z-value'.

Train your model

OpenCOOD uses yaml file to configure all the parameters for training. To train your own model from scratch or a continued checkpoint, run the following commonds:

python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE} [--model_dir  ${CHECKPOINT_FOLDER}]

Arguments Explanation:

  • hypes_yaml: the path of the training configuration file, e.g. opencood/hypes_yaml/second_early_fusion.yaml, meaning you want to train an early fusion model which utilizes SECOND as the backbone. See Tutorial 1: Config System to learn more about the rules of the yaml files.
  • model_dir (optional) : the path of the checkpoints. This is used to fine-tune the trained models. When the model_dir is given, the trainer will discard the hypes_yaml and load the config.yaml in the checkpoint folder.

Test the model

Before you run the following command, first make sure the validation_dir in config.yaml under your checkpoint folder refers to the testing dataset path, e.g. opv2v_data_dumping/test.

python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} [--show_vis] [--show_sequence]

Arguments Explanation:

  • model_dir: the path to your saved model.
  • fusion_method: indicate the fusion strategy, currently support 'early', 'late', and 'intermediate'.
  • show_vis: whether to visualize the detection overlay with point cloud.
  • show_sequence : the detection results will visualized in a video stream. It can NOT be set with show_vis at the same time.

The evaluation results will be dumped in the model directory.

Benchmark and model zoo

Results on OPV2V dataset ([email protected] for no-compression/ compression)

Backbone Fusion Strategy Bandwidth (Megabit),
before/after compression
Default Towns Culver City Download
Naive Late PointPillar Late 0.024/0.024 0.781/0.781 0.668/0.668 url
Cooper PointPillar Early 7.68/7.68 0.800/x 0.696/x url
Attentive Fusion PointPillar Intermediate 126.8/1.98 0.815/0.810 0.735/0.731 url
F-Cooper PointPillar Intermediate 72.08/1.12 0.790/0.788 0.728/0.726 url
V2VNet PointPillar Intermediate 72.08/1.12 0.822/0.814 0.734/0.729 url
Naive Late VoxelNet Late 0.024/0.024 0.738/0.738 0.588/0.588 url
Cooper VoxelNet Early 7.68/7.68 0.758/x 0.677/x url
Attentive Fusion VoxelNet Intermediate 576.71/1.12 0.864/0.852 0.775/0.746 url
Naive Late SECOND Late 0.024/0.024 0.775/0.775 0.682/0.682 url
Cooper SECOND Early 7.68/7.68 0.813/x 0.738/x url
Attentive SECOND Intermediate 63.4/0.99 0.826/0.783 0.760/0.760 url
Naive Late PIXOR Late 0.024/0.024 0.578/0.578 0.360/0.360 url
Cooper PIXOR Early 7.68/7.68 0.678/x 0.558/x url
Attentive PIXOR Intermediate 313.75/1.22 0.687/0.612 0.546/0.492 url

Note:

  • We suggest using PointPillar as the backbone when you are creating your method and try to compare with our benchmark, as we implement most of the SOTA methods with this backbone only.
  • We assume the transimssion rate is 27Mbp/s. Considering the frequency of LiDAR is 10Hz, the bandwidth requirement should be less than 2.7Mbp to avoid severe delay.
  • A 'x' in the benchmark table represents the bandwidth requirement is too large, which can not be considered to employ in practice.

Tutorials

We have a series of tutorials to help you understand OpenCOOD more. Please check the series of our tutorials.

Citation

If you are using our OpenCOOD framework or OPV2V dataset for your research, please cite the following paper:

@inproceedings{xu2022opencood,
 author = {Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, Jiaqi Ma},
 title = {OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication},
 booktitle = {2022 IEEE International Conference on Robotics and Automation (ICRA)},
 year = {2022}}

Also, under this LICENSE, OpenCOOD is for non-commercial research only. Researchers can modify the source code for their own research only. Contracted work that generates corporate revenues and other general commercial use are prohibited under this LICENSE. See the LICENSE file for details and possible opportunities for commercial use.

Future Plans

  • Provide camera APIs for OPV2V
  • Provide the log replay toolbox
  • Implement F-Cooper
  • Implement V2VNet
  • Implement DiscoNet

Contributors

OpenCOOD is supported by the UCLA Mobility Lab. We also appreciate the great work from OpenPCDet, as part of our works use their framework.

Lab Principal Investigator:

Project Lead:

Owner
Runsheng Xu
UCLA PHD candidate, Former Senior Machine Learning Engineer in Mercedes Benz R&D North America
Runsheng Xu
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022