pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Overview

Unofficial implementation:

  • MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper)
  • InsDis: Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination (Paper)

Official implementation:

  • CMC: Contrastive Multiview Coding (Paper)
  • Rethinking Image Mixture for Unsupervised Visual Representation Learning (Paper)

Contrastive Multiview Coding

This repo covers the implementation for CMC (as well as Momentum Contrast and Instance Discrimination), which learns representations from multiview data in a self-supervised way (by multiview, we mean multiple sensory, multiple modal data, or literally multiple viewpoint data. It's flexible to define what is a "view"):

"Contrastive Multiview Coding" Paper, Project Page.

Teaser Image

Highlights

(1) Representation quality as a function of number of contrasted views.

We found that, the more views we train with, the better the representation (of each single view).

(2) Contrastive objective v.s. Predictive objective

We compare the contrastive objective to cross-view prediction, finding an advantage to the contrastive approach.

(3) Unsupervised v.s. Supervised

Several ResNets trained with our unsupervised CMC objective surpasses supervisedly trained AlexNet on ImageNet classification ( e.g., 68.4% v.s. 59.3%). For this first time on ImageNet classification, unsupervised methods are surpassing the classic supervised-AlexNet proposed in 2012 (CPC++ and AMDIM also achieve this milestone concurrently).

Updates

Aug 20, 2019 - ResNets on ImageNet have been added.

Nov 26, 2019 - New results updated. Implementation of MoCo and InsDis added.

Jan 18, 2019 - Weights of InsDis and MoCo added.

Installation

This repo was tested with Ubuntu 16.04.5 LTS, Python 3.5, PyTorch 0.4.0, and CUDA 9.0. But it should be runnable with recent PyTorch versions >=0.4.0

Note: It seems to us that training with Pytorch version >= 1.0 yields slightly worse results. If you find the similar discrepancy and figure out the problem, please report this since we are trying to fix it as well.

Training AlexNet/ResNets with CMC on ImageNet

Note: For AlexNet, we split across the channel dimension and use each half to encode L and ab. For ResNets, we use a standard ResNet model to encode each view.

NCE flags:

  • --nce_k: number of negatives to contrast for each positive. Default: 4096
  • --nce_m: the momentum for dynamically updating the memory. Default: 0.5
  • --nce_t: temperature that modulates the distribution. Default: 0.07 for ImageNet, 0.1 for STL-10

Path flags:

  • --data_folder: specify the ImageNet data folder.
  • --model_path: specify the path to save model.
  • --tb_path: specify where to save tensorboard monitoring events.

Model flag:

  • --model: specify which model to use, including alexnet, resnets18, resnets50, and resnets101

IM flag:

  • --IM: train with IM space.
  • --IM_type: specify the type of IM and other augmentation methods that we implement, including: 'IM', 'global', 'region', 'Cutout', 'RandomErasing'.

Global mixture:

  • --g_alpha: global mix alpha. Default: 1.0
  • --g_num: global mix num. Default: 2
  • --g_prob: global mix prob. Default: 0.1

Region-level mixture:

  • --r_beta: region mix beta. Default: 1.0
  • --r_prob: region mix prob. Default: 0.1
  • --r_num: region mix num. Default: 2
  • --r_pixel_decay: region mix pixel decay. Default: 1.0

An example of command line for training CMC (Default: AlexNet on Single GPU)

CUDA_VISIBLE_DEVICES=0 python train_CMC.py --batch_size 256 --num_workers 36 \
 --data_folder /path/to/data 
 --model_path /path/to/save 
 --tb_path /path/to/tensorboard

Training CMC with ResNets requires at least 4 GPUs, the command of using resnet50v1 looks like

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_CMC.py --model resnet50v1 --batch_size 128 --num_workers 24
 --data_folder path/to/data \
 --model_path path/to/save \
 --tb_path path/to/tensorboard \

To support mixed precision training, simply append the flag --amp, which, however is likely to harm the downstream classification. I measure it on ImageNet100 subset and the gap is about 0.5-1%.

By default, the training scripts will use L and ab as two views for contrasting. You can switch to YCbCr by specifying --view YCbCr, which yields better results (about 0.5-1%). If you want to use other color spaces as different views, follow the line here and other color transfer functions are already available in dataset.py.

Training Linear Classifier

Path flags:

  • --data_folder: specify the ImageNet data folder. Should be the same as above.
  • --save_path: specify the path to save the linear classifier.
  • --tb_path: specify where to save tensorboard events monitoring linear classifier training.

Model flag --model is similar as above and should be specified.

Specify the checkpoint that you want to evaluate with --model_path flag, this path should directly point to the .pth file.

This repo provides 3 ways to train the linear classifier: single GPU, data parallel, and distributed data parallel.

An example of command line for evaluating, say ./models/alexnet.pth, should look like:

CUDA_VISIBLE_DEVICES=0 python LinearProbing.py --dataset imagenet \
 --data_folder /path/to/data \
 --save_path /path/to/save \
 --tb_path /path/to/tensorboard \
 --model_path ./models/alexnet.pth \
 --model alexnet --learning_rate 0.1 --layer 5

Note: When training linear classifiers on top of ResNets, it's important to use large learning rate, e.g., 30~50. Specifically, change --learning_rate 0.1 --layer 5 to --learning_rate 30 --layer 6 for resnet50v1 and resnet50v2, to --learning_rate 50 --layer 6 for resnet50v3.

Pretrained Models

Pretrained weights can be found in Dropbox.

Note:

  • CMC weights are trained with NCE loss, Lab color space, 4096 negatives and amp option. Switching to softmax-ce loss, YCbCr, 65536 negatives, and turning off amp option, are likely to improve the results.
  • CMC_resnet50v2.pth and CMC_resnet50v3.pth are trained with FastAutoAugment, which improves the downstream accuracy by 0.8~1%. I will update weights without FastAutoAugment once they are available.

InsDis and MoCo are trained using the same hyperparameters as in MoCo (epochs=200, lr=0.03, lr_decay_epochs=120,160, weight_decay=1e-4), but with only 4 GPUs.

Arch #Params(M) Loss #Negative Accuracy(%) Delta(%)
InsDis ResNet50 24 NCE 4096 56.5 -
InsDis ResNet50 24 Softmax-CE 4096 57.1 +0.6
InsDis ResNet50 24 Softmax-CE 16384 58.5 +1.4
MoCo ResNet50 24 Softmax-CE 16384 59.4 +0.9

Momentum Contrast and Instance Discrimination

I have implemented and tested MoCo and InsDis on a ImageNet100 subset (but the code allows one to train on full ImageNet simply by setting the flag --dataset imagenet):

The pre-training stage:

  • For InsDis:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax
    
  • For MoCo:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax --moco
    

The linear evaluation stage:

  • For both InsDis and MoCo (lr=10 is better than 30 on this subset, for full imagenet please switch to 30):
    CUDA_VISIBLE_DEVICES=0 python eval_moco_ins.py --model resnet50 \
     --model_path /path/to/model --num_workers 24 --learning_rate 10
    

The comparison of CMC (using YCbCr), MoCo and InsDIS on my ImageNet100 subset, is tabulated as below:

Arch #Params(M) Loss #Negative Accuracy
InsDis ResNet50 24 NCE 16384 --
InsDis ResNet50 24 Softmax-CE 16384 69.1
MoCo ResNet50 24 NCE 16384 --
MoCo ResNet50 24 Softmax-CE 16384 73.4
CMC 2xResNet50half 12 NCE 4096 --
CMC 2xResNet50half 12 Softmax-CE 4096 75.8

Citation

If you find this repo useful for your research, please consider citing the paper

@article{tian2019contrastive,
  title={Contrastive Multiview Coding},
  author={Tian, Yonglong and Krishnan, Dilip and Isola, Phillip},
  journal={arXiv preprint arXiv:1906.05849},
  year={2019}
}

For any questions, please contact Yonglong Tian ([email protected]).

Acknowledgements

Part of this code is inspired by Zhirong Wu's unsupervised learning algorithm lemniscate.

Owner
Zhiqiang Shen
Zhiqiang Shen
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
use tensorflow 2.0 to tell a dog and cat from a specified picture

dog_or_cat use tensorflow 2.0 to tell a dog and cat from a specified picture This is one of the classic experiments for the introduction of deep learn

你这个代码我看不懂 1 Oct 22, 2021
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022