Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Overview

Realtime Unsupervised Depth Estimation from an Image

This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation: Geometry to the rescue" published in ECCV 2016 with minor modifications. In this variant, we train the network end-to-end instead of in coarse to fine manner with deeper network (Resnet 50) and TVL1 loss instead of HS loss.

With the implementation we share the sample Resnet50by2 model trained on KITTI training set:

https://github.com/Ravi-Garg/Unsupervised_Depth_Estimation/blob/master/model/train_iter_40000.caffemodel

Shared model is a small variant of the 50 layer residual network from scratch on KITTI. Our model is <25 MB and predicts depths on 160x608 resolution images at over 30Hz on Nvidia Geforce GTX980 (50Hz on TITAN X). It can be used with caffe without any modification and we provide a simple matlab wrapper for testing.

Click on the image to watch preview of the results on youtube:

Screenshot

If you use our model or the code for your research please cite:

@inproceedings{garg2016unsupervised,
  title={Unsupervised CNN for single view depth estimation: Geometry to the rescue},
  author={Garg, Ravi and Kumar, BG Vijay and Carneiro, Gustavo and Reid, Ian},
  booktitle={European Conference on Computer Vision},
  pages={740--756},
  year={2016},
  organization={Springer}
}

Training Procedure

This model was trained on 23200 raw stereo pairs of KITTI taken from city, residential and road sequences. Images from other sequences of KITTI were left untouched. A subset of 697 images from 28 sequences froms the testset, leaving the remaining 33 sequences from these categories which can be used for training.

To use the same training data use the splits spacified in the file 'train_test_split.mat'.

Our model is trained end-to-end from scratch with adam solver (momentum1 = 0.9 , momentom2 = 0.999, learning rate =10e-3 ) for 40,000 iterations on 4 gpus with batchsize 14 per GPU. This model is a pre-release further tuning of hyperparameters should improve results. Only left-right flips as described in the paper were used to train the provided network. Other agumentations described in the paper and runtime shuffle were not used but should also lead to performance imrovement.

Here is the training loss recorded per 20 iterations:

loss per 20 iterations

Note: We have resized the KITTI images to 160x608 for training - which changes the aspect ratio of the images. Thus for proper evaluation on KITTI the images needs to be resized to this resolution and predicted disparities should be scaled by a factor of 608/width_of_input_image before computing depth. For ease in citing the results for further publications, we share the performance measures.

Our model gives following results on KITTI test-set without any post processing:

RMSE(linear): 4.400866

RMSE(log) : 0.233548

RMSE(log10) : 0.101441

Abs rel diff: 0.137796

Sq rel diff : 0.824861

accuracy THr 1.25 : 0.809765

accuracy THr 1.25 sq: 0.935108

accuracy THr 1.25 cube: 0.974739


The test-set consists of 697 images which was used in https://www.cs.nyu.edu/~deigen/depth/kitti_depth_predictions.mat Depth Predictions were first clipped to depth values between 0 and 50 meters and evaluated only in the region spacified in the given mask.

#Network Architecture

Architecture of our networks closely follow Residual networks scheme. We start from resnet 50 by 2 architecture and have replaced strided convolutions with 2x2 MAX pooling layers like VGG. The first 7x7 convolution with stride 2 is replaced with the 7x7 convolution with no stride and the max-pooled output at ½ resolution is passed through an extra 3x3 convolutional (128 features)->relu->2x2 pooling block. Rest of the network followes resnet50 with half the parameters every layer.

For dense prediction we have followed the skip-connections as specified in FCN and our ECCV paper. We have introduced a learnable scale layer with weight decay 0.01 before every 1x1 convolution of FCN skip-connections which allows us to merge mid-level features more efficiently by:

  • Adaptively selecting the mid-level features which are more correlated to depth of the scene.
  • Making 1x1 convolutions for projections more stable for end to end training.

Further analysis and visualizations of learned features will be released shortly on the arxiv: https://arxiv.org/pdf/1603.04992v2.pdf

Using the code

To train and finetune networks on your own data, you need to compile caffe with additional:

  • “AbsLoss” layer for L1 loss minimization,

  • “Warping” layer for image warpping given flow

  • and modified "filler.hpp" to compute image gradient with convolutions which we share here.

License

For academic usage, the code is released under the permissive BSD license. For any commercial purpose, please contact the authors.

Contact

Please report any known issues on this thread of to [email protected]

Owner
Ravi Garg
Ravi Garg
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022