LogAvgExp - Pytorch Implementation of LogAvgExp

Overview

LogAvgExp - Pytorch

Implementation of LogAvgExp for Pytorch

Install

$ pip install logavgexp-pytorch

Usage

import torch
from logavgexp_pytorch import logavgexp

# basically it is an improved logsumexp (differentiable max)
# normalized for length

x = torch.arange(1000)
y = logavgexp(x, dim = 0, temp = 0.01) # ~998.8

# more than 1 dimension

x = torch.randn(1, 2048, 5)
y = logavgexp(x, dim = 1, temp = 0.2) # (1, 5)

# keep dimension

x = torch.randn(1, 2048, 5)
y = logavgexp(x, dim = 1, temp = 0.2, keepdim = True) # (1, 1, 5)

# masking (False for mask out with large negative value)

x = torch.randn(1, 2048, 5)
m = torch.randint(0, 2, (1, 2048, 1)).bool()

y = logavgexp(x, mask = m, dim = 1, temp = 0.2, keepdim = True) # (1, 1, 5)

With learned temperature

# learned temperature
import torch
from torch import nn
from logavgexp_pytorch import logavgexp

learned_temp = nn.Parameter(torch.ones(1) * -5).exp().clamp(min = 1e-8) # make sure temperature can't hit 0

x = torch.randn(1, 2048, 5)
y = logavgexp(x, temp = learned_temp, dim = -1) # (1, 5)

Or you can use the LogAvgExp class to handle the learned temperature parameter

import torch
from logavgexp_pytorch import LogAvgExp

logavgexp = LogAvgExp(
    temp = 0.01,
    dim = 1,
    learned_temp = True
)

x = torch.randn(1, 2048, 5)
y = logavgexp(x) # (1, 5)

Citations

@misc{lowe2021logavgexp,
    title   = {LogAvgExp Provides a Principled and Performant Global Pooling Operator}, 
    author  = {Scott C. Lowe and Thomas Trappenberg and Sageev Oore},
    year    = {2021},
    eprint  = {2111.01742},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • Enhancement: 2d Pooling

    Enhancement: 2d Pooling

    Could put in 2d pooling for an easy to drop in alternative to AvgPool2d by using pixel_unshuffle for cases where there's exact divisions of an input shape, or padding and unfold for overlapping windows / strides that aren't equal to the window size.

    I don't know how fast Unfold is or if there's a better way to do the operation; I tried checking the PyTorch github to see how it does AvgPool2d for strides that aren't equal to the window size behind the scenes but I can never seem to figure out which version of the operation is the one that's used, it's defined in so many places it's beyond me.

    I've once seen an alternative to pixel unshuffle that used grouped conv2d, a kernel that put each position into its own channel output, and stride, but I can't seem to find it again. It was useful because you could adjust the stride and then it'd be like Unfold, but I never got around to testing if it was actually faster.

    opened by torridgristle 6
  • learned temperature stagnates at a low value (a high value is expected)

    learned temperature stagnates at a low value (a high value is expected)

    Hi,

    Big thanks for your pytorch implementation of the logavgexp !

    I noticed that it is easy for logavgexp to reproduce the max operator (temperature goes nicely to 0); but it has trouble reproducing the mean operator, the temperature stagnates in the following example at 0.35; do your have an explanation for that or ways to circumvent this issue? Thanks !

    import torch
    torch.manual_seed(12345)
    from logavgexp_pytorch import LogAvgExp
    
    B = 10
    N = 20
    x = torch.randn(B,N)
    #y, _ = x.max(dim=-1, keepdim=True)
    y    = x.mean(dim=-1, keepdim=True)
    logavgexp = LogAvgExp(
        temp = 1,
        dim = 1,
        learned_temp = True,
        keepdim = True)
    
    optimizer = torch.optim.Adam(logavgexp.parameters(), lr=0.01)
    loss_func = torch.nn.MSELoss()
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           factor=0.5,
                                                           patience=100,
                                                           verbose=True)
    
    for i in range(10000):
        prediction = logavgexp(x)
        loss = loss_func(prediction, y) 
        optimizer.zero_grad()
        loss.backward()        
        optimizer.step()
        scheduler.step(loss, epoch=i)
        print(f"ite: {i}, loss: {loss.item():.2e}, temperature: {logavgexp.temp.exp().item():.4f}")      
        
    
    
    opened by ldv1 0
Releases(0.0.6)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022