Classic Papers for Beginners and Impact Scope for Authors.

Related tags

Deep LearningTopPaper
Overview

TopPaper

Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provide a Top Academic Paper Chart for beginners and reseachers to take one step faster.

Welcome to contribute more subject or valuable (at least you think) papers. Please feel free to pull requests or open an issue.



0. Traditional Methods

Abbreviation Paper Cited by Journal Year 1st Author 1st Affiliation
SIFT Object Recognition from Local Scale-Invariant Features 20 K ICCV 1999 David G. Lowe University of British Columbia
HOG Histograms of Oriented Gradients for Human Detection 35 K CVPR 2005 Navneet Dalal inrialpes
SURF SURF: Speeded Up Robust Features 18 K ECCV 2006 Herbert Bay ETH Zurich
......

1. CNN [Convolutional Neural Network]

1.1 Image Classification

1.1.1 Architecture

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
LeNet Backpropagation applied to handwritten zip code recognition 8.3 K Neural Computation 1989 Yann Lecun AT&T Bell Laboratories
LeNet Gradient-based learning applied to document recognition 35 K Proceedings of the IEEE 1998 Yann Lecun AT&T Research Laboratories
ImageNet ImageNet: A large-scale hierarchical image database 26 K CVPR 2009 Jia Dengn Princeton University
AlexNet ImageNet Classification with Deep Convolutional Neural Networks 79 K NIPS 2012 Alex Krizhevsky University of Toronto
ZFNet Visualizing and Understanding Convolutional Networks 11 K ECCV 2014 Matthew D Zeiler New York University
VGGNet Very Deep Convolutional Networks for Large-Scale Image Recognition 55 K ICLR 2015 Karen Simonyan Oxford
GoogLeNet Going Deeper with Convolutions 29 K CVPR 2015 Christian Szegedy Google
GoogLeNet_v2_v3 Rethinking the Inception Architecture for Computer Vision 12 K CVPR 2016 Christian Szegedy Google
ResNet Deep Residual Learning for Image Recognition 74 K CVPR 2016 Kaiming He MSRA
DenseNet Densely Connected Convolutional Networks 15 K CVPR 2017 Gao Huang Cornell University
ResNeXt Aggregated Residual Transformations for Deep Neural Networks 3.9 K CVPR 2017 Saining Xie UC San Diego
MobileNet MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 7.7 K arXiv 2017 Andrew G. Howard Google
SENet Squeeze-and-Excitation Networks 6.3 K CVPR 2018 Jie Hu Momenta
MobileNet_v2 MobileNetV2: Inverted Residuals and Linear Bottlenecks 4.4 K CVPR 2018 Mark Sandler Google
ShuffleNet ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 2.3 K CVPR 2018 Xiangyu Zhang Megvii
ShuffleNet V2 ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design 1.3 K ECCV 2018 Ningning Ma Megvii
MobileNet_v3 Searching for MobileNetV3 0.6 K ICCV 2019 Andrew Howard Google
EfficientNet EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 1.9 K ICML 2019 Mingxing Tan Google
GhostNet GhostNet: More Features from Cheap Operations 0.1 K CVPR 2020 Kai Han Huawei Noah
AdderNet AdderNet: Do We Really Need Multiplications in Deep Learning? 33 CVPR 2020 Hanting Chen Huawei Noah
Res2Net Res2Net: A New Multi-scale Backbone Architecture 0.2 K TPAMI 2021 Shang-Hua Gao Nankai University

1.1.2 Dataset, Augmentation, Trick

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
BN Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 26 K ICML 2015 Sergey Ioffe Google
LN Layer Normalization 2.9 K NIPS 2016 Jimmy Lei Ba University of Toronto
GN Group Normalization 1.1 K ECCV 2018 Yuxin Wu FAIR
- Bag of Tricks for Image Classification with Convolutional Neural Networks 361 CVPR 2019 Tong He Amazon
- Fixing the train-test resolution discrepancy 122 NeurIPS 2019 Hugo Touvron FAIR
Auto-Augment AutoAugment: Learning Augmentation Policies from Data 487 CVPR 2019 Ekin D. Cubuk Google
- Fixing the train-test resolution discrepancy: FixEfficientNet 53 Arxiv 2020 Hugo Touvron FAIR

1.2 Object Detection

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
RCNN Rich feature hierarchies for accurate object detection and semantic segmentation 17 K CVPR 2014 Ross Girshick Berkeley
Fast RCNN Fast R-CNN 14 K ICCV 2015 Ross Girshick Microsoft Research
Faster RCNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 20 K NIPS 2015 Shaoqing Ren USTC, MSRA
SSD SSD: Single Shot MultiBox Detector 13 K ECCV 2016 Wei Liu UNC
YOLO You Only Look Once: Unified, Real-Time Object Detection 15 K CVPR 2016 Joseph Redmon University of Washington
Mask RCNN Mask R-CNN 10 K ICCV 2017 Kaiming He FAIR
DSSD DSSD : Deconvolutional Single Shot Detector 1.0 K CVPR 2017 Cheng-Yang Fu UNC
YOLO9000 YOLO9000: Better, Faster, Stronger. 7.7 K CVPR 2017 Joseph Redmon University of Washington
FPN Feature Pyramid Networks for Object Detection 6.7 K CVPR 2017 Tsung-Yi Lin FAIR
Focal Loss Focal Loss for Dense Object Detection 6.7 K ICCV 2017 Tsung-Yi Lin FAIR
Deformable Conv Deformable Convolutional Networks 1.6 K ICCV 2017 Jifeng Dai MSRA
YOLO V3 Yolov3: An incremental improvement 6.9 K CVPR 2018 Joseph Redmon University of Washington
ATSS Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection 0.1 K CVPR 2020 Shifeng Zhang CASIA
EfficientDet EfficientDet: Scalable and Efficient Object Detection 0.3 K CVPR 2020 Mingxing Tan Google

1.3 Object Segmentation

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
FCN Fully Convolutional Networks for Semantic Segmentation 22 K CVPR 2015 Jonathan Long UC Berkeley
DeepLab DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 7.4 K ICLR 2015 Liang-Chieh Chen Google
Unet U-Net: Convolutional Networks for Biomedical Image Segmentation 24 K MICCAI 2015 Olaf Ronneberger University of Freiburg
- Learning to Segment Object Candidates 0.6 K NIPS 2015 Pedro O. Pinheiro FAIR
Dilated Conv Multi-Scale Context Aggregation by Dilated Convolutions 4.5 K ICLR 2016 Fisher Y Princeton University
- Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network 0.7 K CVPR 2017 Chao Peng Tsinghua
RefineNet RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation 1.6 K CVPR 2017 Guosheng Lin The University of Adelaide

1.4 Re_ID [Person Re-Identification]

1.5 OCR [Optical Character Recognition]

Abbreviation Paper Cited by Journal Year 1st Author 1st Affiliation
CTC Connectionist temporal classifaction: labelling unsegmented sequence data with recurrent neural network 2.9 K ICML 2006 Alex Graves IDSIA

1.6 Face Recognition

Abbreviation Paper Cited by Journal Year 1st Author 1st Affiliation
DeepFace DeepFace: Closing the Gap to Human-Level Performance in Face Verification 5.3 K CVPR 2014 Yaniv Taigman FAIR
DeepID v1 Deep Learning Face Representation from Predicting 10,000 Classes 1.8 K CVPR 2014 Yi Sun CUHK
DeepID v2 Deep Learning Face Representation by Joint Identification-Verification 1.9 K NIPS 2014 Yi Sun CUHK
FaceNet FaceNet: A Unified Embedding for Face Recognition and Clustering 7.4 K CVPR 2015 Florian Schrof Google
Center Loss A Discriminative Feature Learning Approach for Deep Face Recognition 2.1 K ECCV 2016 Yandong Wen CMU
ArcFace ArcFace: Additive Angular Margin Loss for Deep Face Recognition 1.3 K CVPR 2017 Jiankang Deng Imperial College London
SphereFace SphereFace: Deep Hypersphere Embedding for Face Recognition 1.3 K CVPR 2017 Weiyang Liu Georgia Institute of Technology
CosFace CosFace: Large Margin Cosine Loss for Deep Face Recognition 0.8 K CVPR 2018 Hao Wang Tecent
AM-Softmax Loss Additive Margin Softmax for Face Verification 0.5 K Signal Processing Letters 2018 Feng Wang UESTC

1.7 NAS [Neural Architecture Search]

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
Darts DARTS: Differentiable Architecture Search 1.3 K ICLR 2019 Hanxiao Liu CMU
- Neural Architecture Search with Reinforcement Learning 2.5 K ICLR 2017 Barret Zoph Google
- Efficient Neural Architecture Search via Parameter Sharing 1.2 K ICML 2018 Hieu Pham Google
- SNAS: Stochastic Neural Architecture Search 0.3 K ICLR 2019 Sirui Xie SenseTime
PC-Darts PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search 159 ICLR 2020 Yuhui Xu Huawei

1.8 Image Super_Resolution

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
SRCNN Image Super-Resolution Using Deep Convolutional Networks 4.1 K ECCV 2014 Chao Dong CUHK
ESPCN Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network 2.4 K CVPR 2016 Wenzhe Shi Twitter
FSRCNN Accelerating the Super-Resolution Convolutional Neural Network 1.3 K ECCV 2016 Chao Dong CUHK
VDSR Accurate Image Super-Resolution Using Very Deep Convolutional Networks 3.5 K CVPR 2016 Jiwon Kim Seoul National University
DRCN Deeply-Recursive Convolutional Network for Image Super-Resolution 1.4 K CVPR 2016 Jiwon Kim Seoul National University
EDSR Enhanced Deep Residual Networks for Single Image Super-Resolution 2.0 K CVPRW 2017 Bee Lim Seoul National University
DRRN Image Super-Resolution via Deep Recursive Residual Network 1.0 K CVPR 2017 Ying Tai NJUST
SRDenseNet Image Super-Resolution Using Dense Skip Connections 0.5 K ICCV 2017 Tong Tong Imperial Vision
SRGAN Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 5.3 K CVPR 2017 Christian Ledig Twitter
LapSRN Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution 1.1 K CVPR 2017 Wei-Sheng Lai 1University of California
RDN Residual Dense Network for Image Super-Resolution 1.1 K CVPR 2018 Yulun Zhang Northeastern University
DBPN Deep Back-Projection Networks For Super-Resolution 0.6 K CVPR 2018 Muhammad Haris Toyota Technological Institute
RCAN Image Super-Resolution Using Very Deep Residual Channel Attention Networks 1.0 K ECCV 2018 Yulun Zhang Northeastern University

1.9 Image Denoising

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
CBDNet Toward Convolutional Blind Denoising of Real Photographs 0.2 K CVPR 2019 Shi Guo HIT
- Learning Deep CNN Denoiser Prior for Image Restoration 0.8 K CVPR 2017 Kai Zhang HIT
CnDNN Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising 2.9 K TIP 2017 Kai Zhang HIT
FFDNet FFDNet: Toward a fast and flexible solution for CNN based image denoising 0.6 K TIP 2018 Kai Zhang HIT
SRMD Learning a Single Convolutional Super-Resolution Network for Multiple Degradations 0.3 K CVPR 2018 Kai Zhang HIT
RIDNet Real Image Denoising with Feature Attention] 87 ICCV 2019 Saeed Anwar CSIRO
CycleISP CycleISP: Real Image Restoration via Improved Data Synthesis 28 CVPR 2020 Syed Waqas Zamir UAE
AINDNet Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization 14 CVPR 2020 Yoonsik Kim Seoul National University

1.10 Model Compression, Pruning, Quantization, Knowledge Distillation

Abbreviation Paper Cited By Journal Year 1st Author 1st Affiliation
KD Distilling the Knowledge in a Neural Network 5.8 K NIPS-W 2014 Geoffrey Hinton Google
DeepCompression Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding 4.9K ICLR 2016 Song Han Stanford
Fixed Point Quant Fixed point quantization of deep convolutional networks 0.5 K ICLR-W 2016 Darryl D. Lin Qualcomm
DoReFa DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients 1.1 K CVPR 2016 Shuchang Zhou Megvii
Fake Quant Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference 0.8 K CVPR 2018 Benoit Jacob Google
Once for all Once-for-All: Train One Network and Specialize it for Efficient Deployment 0.1 K ICLR 2020 Han Cai MIT

2. Transformer in Vision

Abbreviation Paper Cited by Journal Year 1st Author 1st Affiliation
Image Transformer Image Transformer 337 ICML 2018 Niki Parmar Google
- Attention Augmented Convolutional Networks 191 ICCV 2019 Irwan Bello Google
DETR End-to-End Object Detection with Transformers 252 ECCV 2020 Nicolas Carion Facebook AI
Deit Training data-efficient image transformers & distillation through attention 57 arXiv 2020 Hugo Touvron FAIR
i-GPT Generative Pretraining from Pixels 38 ICML 2020 Mark Chen OpenAI
Deformable DETR Deformable DETR: Deformable Transformers for End-to-End Object Detection 12 ICLR 2021 Xizhou Zhu SenseTime
- Training data-efficient image transformers & distillation through attention 57 Arxiv 2020 Hugo Touvron FAIR
ViT An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 175 ICLR 2021 Alexey Dosovitskiy Google
IPT Pre-Trained Image Processing Transformer 16 CVPR 2021 Hanting Chen Huawei Noah
- A Survey on Visual Transformer 12 Arxiv 2021 Kai Han Huawei Noah
TNT Transformer in Transformer 8 Arxiv 2021 Kai Han Huawei Noah
......

3. Transformer and Self-Attention in NLP

Abbreviation Paper Cited by Journal Year 1st Author 1st Affiliation
Transformer Attention Is All You Need 19 K NIPS 2017 Ashish Vaswani Google
- Self-Attention with Relative Position Representations 0.5 K NAACL 2018 Peter Shaw Google
Bert BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 17 K NAACL 2019 Jacob Devlin Google

4. Others

......

Acknowledgement

Thanks for the materias and help from Aidong Men, Bo Yang, Zhuqing Jiang, Qishuo Lu, Zhengxin Zeng, Jia'nan Han, Pengliang Tang, Yiyun Zhao, Xian Zhang ......

Owner
Qiulin Zhang
Qiulin Zhang
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 08, 2023
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models.

FFG-benchmarks This repository provides an unified frameworks to train and test the state-of-the-art few-shot font generation (FFG) models. What is Fe

Clova AI Research 101 Dec 27, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022