ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

Overview

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

This repository contains code, model, dataset for ChineseBERT at ACL2021.

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information
Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li

Guide

Section Description
Introduction Introduction to ChineseBERT
Download Download links for ChineseBERT
Quick tour Learn how to quickly load models
Experiment Experiment results on different Chinese NLP datasets
Citation Citation
Contact How to contact us

Introduction

We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese characters into language model pretraining.

First, for each Chinese character, we get three kind of embedding.

  • Char Embedding: the same as origin BERT token embedding.
  • Glyph Embedding: capture visual features based on different fonts of a Chinese character.
  • Pinyin Embedding: capture phonetic feature from the pinyin sequence ot a Chinese Character.

Then, char embedding, glyph embedding and pinyin embedding are first concatenated, and mapped to a D-dimensional embedding through a fully connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

MODEL

ChineseBERT leverages the glyph and pinyin information of Chinese characters to enhance the model's ability of capturing context semantics from surface character forms and disambiguating polyphonic characters in Chinese.

Download

We provide pre-trained ChineseBERT models in Pytorch version and followed huggingFace model format.

  • ChineseBERT-base:12-layer, 768-hidden, 12-heads, 147M parameters
  • ChineseBERT-large: 24-layer, 1024-hidden, 16-heads, 374M parameters

Our model can be downloaded here:

Model Model Hub Size
ChineseBERT-base Pytorch 564M
ChineseBERT-large Pytorch 1.4G

Note: The model hub contains model, fonts and pinyin config files.

Quick tour

We train our model with Huggingface, so the model can be easily loaded.
Download ChineseBERT model and save at [CHINESEBERT_PATH].
Here is a quick tour to load our model.

>>> from models.modeling_glycebert import GlyceBertForMaskedLM

>>> chinese_bert = GlyceBertForMaskedLM.from_pretrained([CHINESEBERT_PATH])
>>> print(chinese_bert)

The complete example can be find here: Masked word completion with ChineseBERT

Another example to get representation of a sentence:

>>> from datasets.bert_dataset import BertDataset
>>> from models.modeling_glycebert import GlyceBertModel

>>> tokenizer = BertDataset([CHINESEBERT_PATH])
>>> chinese_bert = GlyceBertModel.from_pretrained([CHINESEBERT_PATH])
>>> sentence = '我喜欢猫'

>>> input_ids, pinyin_ids = tokenizer.tokenize_sentence(sentence)
>>> length = input_ids.shape[0]
>>> input_ids = input_ids.view(1, length)
>>> pinyin_ids = pinyin_ids.view(1, length, 8)
>>> output_hidden = chinese_bert.forward(input_ids, pinyin_ids)[0]
>>> print(output_hidden)
tensor([[[ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519],
         [ 0.0144, -0.2494, -0.1853,  ...,  0.0673,  0.0424, -0.1074],
         [ 0.0839, -0.2989, -0.2421,  ...,  0.0454, -0.1474, -0.1736],
         [-0.0499, -0.2983, -0.1604,  ..., -0.0550, -0.1863,  0.0226],
         [ 0.1428, -0.0682, -0.1310,  ..., -0.1126,  0.0440, -0.1782],
         [ 0.0287, -0.0126,  0.0389,  ...,  0.0228, -0.0677, -0.1519]]],
       grad_fn=)

The complete code can be find HERE

Experiments

ChnSetiCorp

ChnSetiCorp is a dataset for sentiment analysis.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

THUCNews

THUCNews contains news in 10 categories.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 95.4 95.5
BERT 95.1 95.4
BERT-wwm 95.4 95.3
RoBERTa 95.0 95.6
MacBERT 95.2 95.6
ChineseBERT 95.6 95.7
---- ----
RoBERTa-large 95.8 95.8
MacBERT-large 95.7 95.9
ChineseBERT-large 95.8 95.9

Training details and code can be find HERE

XNLI

XNLI is a dataset for natural language inference.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 79.7 78.6
BERT 79.0 78.2
BERT-wwm 79.4 78.7
RoBERTa 80.0 78.8
MacBERT 80.3 79.3
ChineseBERT 80.5 79.6
---- ----
RoBERTa-large 82.1 81.2
MacBERT-large 82.4 81.3
ChineseBERT-large 82.7 81.6

Training details and code can be find HERE

BQ

BQ Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 86.3 85.0
BERT 86.1 85.2
BERT-wwm 86.4 85.3
RoBERTa 86.0 85.0
MacBERT 86.0 85.2
ChineseBERT 86.4 85.2
---- ----
RoBERTa-large 86.3 85.8
MacBERT-large 86.2 85.6
ChineseBERT-large 86.5 86.0

Training details and code can be find HERE

LCQMC

LCQMC Corpus is a sentence pair matching dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 89.8 87.2
BERT 89.4 87.0
BERT-wwm 89.6 87.1
RoBERTa 89.0 86.4
MacBERT 89.5 87.0
ChineseBERT 89.8 87.4
---- ----
RoBERTa-large 90.4 87.0
MacBERT-large 90.6 87.6
ChineseBERT-large 90.5 87.8

Training details and code can be find HERE

TNEWS

TNEWS is a 15-class short news text classification dataset.
Evaluation Metrics: Accuracy

Model Dev Test
ERNIE 58.24 58.33
BERT 56.09 56.58
BERT-wwm 56.77 56.86
RoBERTa 57.51 56.94
ChineseBERT 58.64 58.95
---- ----
RoBERTa-large 58.32 58.61
ChineseBERT-large 59.06 59.47

Training details and code can be find HERE

CMRC

CMRC is a machin reading comprehension task dataset.
Evaluation Metrics: EM

Model Dev Test
ERNIE 66.89 74.70
BERT 66.77 71.60
BERT-wwm 66.96 73.95
RoBERTa 67.89 75.20
MacBERT - -
ChineseBERT 67.95 95.7
---- ----
RoBERTa-large 70.59 77.95
ChineseBERT-large 70.70 78.05

Training details and code can be find HERE

OntoNotes

OntoNotes 4.0 is a Chinese named entity recognition dataset and contains 18 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 79.69 82.09 80.87
RoBERTa 80.43 80.30 80.37
ChineseBERT 80.03 83.33 81.65
---- ---- ----
RoBERTa-large 80.72 82.07 81.39
ChineseBERT-large 80.77 83.65 82.18

Training details and code can be find HERE

Weibo

Weibo is a Chinese named entity recognition dataset and contains 4 named entity types.

Evaluation Metrics: Span-Level F1

Model Test Precision Test Recall Test F1
BERT 67.12 66.88 67.33
RoBERTa 68.49 67.81 68.15
ChineseBERT 68.27 69.78 69.02
---- ---- ----
RoBERTa-large 66.74 70.02 68.35
ChineseBERT-large 68.75 72.97 70.80

Training details and code can be find HERE

Contact

If you have any question about our paper/code/modal/data...
Please feel free to discuss through github issues or emails.
You can send email to [email protected] or [email protected]

Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022