A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

Overview

APPNP

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019).


Abstract

Neural message passing algorithms for semi-supervised classification on graphs have recently achieved great success. However, these methods only consider nodes that are a few propagation steps away and the size of this utilized neighborhood cannot be easily extended. In this paper, we use the relationship between graph convolutional networks (GCN) and PageRank to derive an improved propagation scheme based on personalized PageRank. We utilize this propagation procedure to construct personalized propagation of neural predictions (PPNP) and its approximation, APPNP. Our model's training time is on par or faster and its number of parameters on par or lower than previous models. It leverages a large, adjustable neighborhood for classification and can be combined with any neural network. We show that this model outperforms several recently proposed methods for semi-supervised classification on multiple graphs in the most thorough study done so far for GCN-like models.

A PyTorch and Tensorflow implementation is awailable [here.].

This repository provides a PyTorch implementation of PPNP and APPNP as described in the paper:

Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Johannes Klicpera, Aleksandar Bojchevski, Stephan Günnemann. ICLR, 2019. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The target vector is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training an APPNP/PPNP model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/cora_edges.csv`.
  --features-path   STR    Features json.         Default is `input/cora_features.json`.
  --target-path     STR    Target classes csv.    Default is `input/cora_target.csv`.

Model options

  --seed              INT     Random seed.                   Defailt is 42.
  --model             STR     Model exact or approximate.    Default is `exact`.
  --iterations        INT     APP iterations.                Default is 10.
  --alpha             FLOAT   Teleport parameter.            Default is 0.1
  --epochs            INT     Number of training epochs.     Default is 2000.
  --early-stopping    INT     Early stopping rounds.         Default is 5.
  --training-size     INT     Training set size.             Default is 1500.
  --test-size         INT     Test set size.                 Default is 500.
  --learning-rate     FLOAT   Adam learning rate.            Default is 0.01
  --dropout           FLOAT   Dropout rate value.            Default is 0.5
  --lambd             FLOAT   Rgularization parameter.       Default is 0.005.
  --layers            LST     Layer sizes in first layers.   Default is [64, 64]. 

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

python src/main.py

Training a PPNP model for a 100 epochs.

python src/main.py --epochs 100

Training an APPNP model.

python src/main.py --model approximate

Increasing the learning rate and the dropout.

python src/main.py --learning-rate 0.1 --dropout 0.9

License


You might also like...
A PyTorch implementation of SlowFast based on ICCV 2019 paper
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Official PyTorch implementation of
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Comments
  • About training

    About training

    Hi, thanks for you sharing your nice work. I have a question when I run your code. Maybe I misunderstand the main point of this paper. It seems that when you train you model, you do not apply the graph information, which means your network is a normal fully connected network. After training, you apply PageRank to the output of the network when evaluate the model. Is my understanding correct?

    opened by Jianjin123 4
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022