A nutritional label for food for thought.

Overview

Lexiscore

As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional label for food for thought designed to help you narrow in on resources which personally bring you the most value. The open source companion software can automatically label raw text originating from RSS feeds, bookmarked pages, PDFs, EPUBs, and more. In the scope of this project, I'm considering valuable resources to be those from which you learn a lot, those which are packed with ideas you find surprising.

Read more...

Installation

Note: This tool requires a running instance of the conceptarium as a proxy for your knowledge.

The lexiscore labeler can either be deployed from source or using Docker.

Docker

To deploy the lexiscore labeler using Docker, first make sure to have Docker installed, then simply run the following.

docker run -p 8501:8501 paulbricman/lexiscore 

The tool should be available at localhost:8501.

From Source

To set up the lexiscore labeler, clone the repository and run the following:

python3 -m pip install -r requirements.txt
streamlit run main.py

The tool should be available at localhost:8501.

Screenshots

You might also like...
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Comments
  • RSS OPML only pulls last article

    RSS OPML only pulls last article

    Summary

    Adding RSS from OPML only pulls the last article.

    Details

    After setting up lexiscore, I take my blog's RSS (https://ivans.io/rss/) and convert it to OPML using https://opml-gen.ovh/. This yields the following file:

    <opml version="2.0">
    	<body>
    		<outline text="Subscriptions" title="Subscriptions">
    			<outline xmlUrl='https://ivans.io/rss/' />
    	
    		</outline>
    	</body>
    </opml>
    

    After adding this to lexiscore, only the most recent article appears in the reading list. I've checked the RSS feed, and all articles are fully present.

    Desired Behavior

    RSS feeds should pull all articles.

    opened by issmirnov 4
  • NLTK downloader problem when deploying with docker.

    NLTK downloader problem when deploying with docker.

    I have deployed the docker image to my personal server. After importing the RSS from my blog (https://ivans.io/rss/) as an OPML file, I click on "start labelling". This causes a stack trace:

    LookupError: ********************************************************************** 
    Resource punkt not found. Please use the NLTK Downloader to obtain the resource: 
    [31m>>> import nltk >>> nltk.download('punkt') 
    [0m For more information see: https://www.nltk.org/data.html Attempted to load tokenizers/punkt/PY3/english.pickle
    [0m Searched in: - '/root/nltk_data' - '/usr/local/nltk_data' - '/usr/local/share/nltk_data' - '/usr/local/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' - '' **********************************************************************
    Traceback:
    File "/usr/local/lib/python3.8/site-packages/streamlit/script_runner.py", line 354, in _run_script
        exec(code, module.__dict__)
    File "/app/main.py", line 30, in <module>
        cart_section(col2)
    File "/app/components.py", line 110, in cart_section
        content_paragraphs = get_paragraphs(row['text'])
    File "/app/processing.py", line 19, in get_paragraphs
        sents = sent_tokenize(line)
    File "/usr/local/lib/python3.8/site-packages/nltk/tokenize/__init__.py", line 107, in sent_tokenize
        tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 750, in load
        opened_resource = _open(resource_url)
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 875, in _open
        return find(path_, path + [""]).open()
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 583, in find
        raise LookupError(resource_not_found)
    
    opened by issmirnov 3
  • Add aggregator page as input source

    Add aggregator page as input source

    Imagine adding this as input sources of type "Aggregator": https://metaphor.so/search?q=The%20coolest%20essay%20on%20human-machine%20collaboration%2C%20cognitive%20augmentation%2C%20and%20tools%20for%20thought%20is

    The labeling software would sift through and add a nutritional value filter on top of a cool "search" approach

    enhancement 
    opened by paulbricman 0
  • Save concptarium URL with local cookie

    Save concptarium URL with local cookie

    Currently, I have this deployed via docker on a personal server. On every page refresh, I am asked for the url of the conceptarium. It would be useful to have this URL saved in local cookie storage.

    enhancement 
    opened by issmirnov 1
Releases(v1.0.0)
Owner
Paul Bricman
Building tools which augment the mind.
Paul Bricman
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
MADT: Offline Pre-trained Multi-Agent Decision Transformer

MADT: Offline Pre-trained Multi-Agent Decision Transformer A link to our paper can be found on Arxiv. Overview Official codebase for Offline Pre-train

Linghui Meng 51 Dec 21, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022