A nutritional label for food for thought.

Overview

Lexiscore

As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional label for food for thought designed to help you narrow in on resources which personally bring you the most value. The open source companion software can automatically label raw text originating from RSS feeds, bookmarked pages, PDFs, EPUBs, and more. In the scope of this project, I'm considering valuable resources to be those from which you learn a lot, those which are packed with ideas you find surprising.

Read more...

Installation

Note: This tool requires a running instance of the conceptarium as a proxy for your knowledge.

The lexiscore labeler can either be deployed from source or using Docker.

Docker

To deploy the lexiscore labeler using Docker, first make sure to have Docker installed, then simply run the following.

docker run -p 8501:8501 paulbricman/lexiscore 

The tool should be available at localhost:8501.

From Source

To set up the lexiscore labeler, clone the repository and run the following:

python3 -m pip install -r requirements.txt
streamlit run main.py

The tool should be available at localhost:8501.

Screenshots

You might also like...
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Official Pytorch Implementation of:
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

 Shared Attention for Multi-label Zero-shot Learning
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Code for Two-stage Identifier:
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

Official implementation of paper
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Comments
  • RSS OPML only pulls last article

    RSS OPML only pulls last article

    Summary

    Adding RSS from OPML only pulls the last article.

    Details

    After setting up lexiscore, I take my blog's RSS (https://ivans.io/rss/) and convert it to OPML using https://opml-gen.ovh/. This yields the following file:

    <opml version="2.0">
    	<body>
    		<outline text="Subscriptions" title="Subscriptions">
    			<outline xmlUrl='https://ivans.io/rss/' />
    	
    		</outline>
    	</body>
    </opml>
    

    After adding this to lexiscore, only the most recent article appears in the reading list. I've checked the RSS feed, and all articles are fully present.

    Desired Behavior

    RSS feeds should pull all articles.

    opened by issmirnov 4
  • NLTK downloader problem when deploying with docker.

    NLTK downloader problem when deploying with docker.

    I have deployed the docker image to my personal server. After importing the RSS from my blog (https://ivans.io/rss/) as an OPML file, I click on "start labelling". This causes a stack trace:

    LookupError: ********************************************************************** 
    Resource punkt not found. Please use the NLTK Downloader to obtain the resource: 
    [31m>>> import nltk >>> nltk.download('punkt') 
    [0m For more information see: https://www.nltk.org/data.html Attempted to load tokenizers/punkt/PY3/english.pickle
    [0m Searched in: - '/root/nltk_data' - '/usr/local/nltk_data' - '/usr/local/share/nltk_data' - '/usr/local/lib/nltk_data' - '/usr/share/nltk_data' - '/usr/local/share/nltk_data' - '/usr/lib/nltk_data' - '/usr/local/lib/nltk_data' - '' **********************************************************************
    Traceback:
    File "/usr/local/lib/python3.8/site-packages/streamlit/script_runner.py", line 354, in _run_script
        exec(code, module.__dict__)
    File "/app/main.py", line 30, in <module>
        cart_section(col2)
    File "/app/components.py", line 110, in cart_section
        content_paragraphs = get_paragraphs(row['text'])
    File "/app/processing.py", line 19, in get_paragraphs
        sents = sent_tokenize(line)
    File "/usr/local/lib/python3.8/site-packages/nltk/tokenize/__init__.py", line 107, in sent_tokenize
        tokenizer = load("tokenizers/punkt/{0}.pickle".format(language))
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 750, in load
        opened_resource = _open(resource_url)
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 875, in _open
        return find(path_, path + [""]).open()
    File "/usr/local/lib/python3.8/site-packages/nltk/data.py", line 583, in find
        raise LookupError(resource_not_found)
    
    opened by issmirnov 3
  • Add aggregator page as input source

    Add aggregator page as input source

    Imagine adding this as input sources of type "Aggregator": https://metaphor.so/search?q=The%20coolest%20essay%20on%20human-machine%20collaboration%2C%20cognitive%20augmentation%2C%20and%20tools%20for%20thought%20is

    The labeling software would sift through and add a nutritional value filter on top of a cool "search" approach

    enhancement 
    opened by paulbricman 0
  • Save concptarium URL with local cookie

    Save concptarium URL with local cookie

    Currently, I have this deployed via docker on a personal server. On every page refresh, I am asked for the url of the conceptarium. It would be useful to have this URL saved in local cookie storage.

    enhancement 
    opened by issmirnov 1
Releases(v1.0.0)
Owner
Paul Bricman
Building tools which augment the mind.
Paul Bricman
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023