Shared Attention for Multi-label Zero-shot Learning

Overview

Shared Attention for Multi-label Zero-shot Learning

Overview

This repository contains the implementation of Shared Attention for Multi-label Zero-shot Learning.

In this work, we address zero-shot multi-label learning for recognition all (un)seen labels using a shared multi-attention method with a novel training mechanism.

Image


Prerequisites

  • Python 3.x
  • TensorFlow 1.8.0
  • sklearn
  • matplotlib
  • skimage
  • scipy==1.4.1

Data Preparation

Please download and extract the vgg_19 model (http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz) in ./model/vgg_19. Make sure the extract model is named vgg_19.ckpt

NUS-WIDE

  1. Please download NUS-WIDE images and meta-data into ./data/NUS-WIDE folder according to the instructions within the folders ./data/NUS-WIDE and ./data/NUS-WIDE/Flickr.

  2. To extract features into TensorFlow storage format, please run:

python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Train`: create NUS_WIDE_Train_full_feature_ZLIB.tfrecords
python ./extract_data/extract_full_NUS_WIDE_images_VGG_feature_2_TFRecord.py			#`data_set` == `Test`: create NUS_WIDE_Test_full_feature_ZLIB.tfrecords

Please change the data_set variable in the script to Train and Test to extract NUS_WIDE_Train_full_feature_ZLIB.tfrecords and NUS_WIDE_Test_full_feature_ZLIB.tfrecords.

Open Images

  1. Please download Open Images urls and annotation into ./data/OpenImages folder according to the instructions within the folders ./data/OpenImages/2017_11 and ./data/OpenImages/2018_04.

  2. To crawl images from the web, please run the script:

python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `train`: download images into `./image_data/train/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `validation`: download images into `./image_data/validation/`
python ./download_imgs/asyn_image_downloader.py 					#`data_set` == `test`: download images into `./image_data/test/`

Please change the data_set variable in the script to train, validation, and test to download different data splits.

  1. To extract features into TensorFlow storage format, please run:
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `train`: create train_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_images_VGG_feature_2_TFRecord.py						#`data_set` == `validation`: create validation_feature_2018_04_ZLIB.tfrecords
python ./extract_data/extract_test_seen_unseen_images_VGG_feature_2_TFRecord.py			        #`data_set` == `test`:  create OI_seen_unseen_test_feature_2018_04_ZLIB.tfrecords

Please change the data_set variable in the extract_images_VGG_feature_2_TFRecord.py script to train, and validation to extract features from different data splits.


Training and Evaluation

NUS-WIDE

  1. To train and evaluate zero-shot learning model on full NUS-WIDE dataset, please run:
python ./zeroshot_experiments/NUS_WIDE_zs_rank_Visual_Word_Attention.py

Open Images

  1. To train our framework, please run:
python ./multilabel_experiments/OpenImage_rank_Visual_Word_Attention.py				#create a model checkpoint in `./results`
  1. To evaluate zero-shot performance, please run:
python ./zeroshot_experiments/OpenImage_evaluate_top_multi_label.py					#set `evaluation_path` to the model checkpoint created in step 1) above

Please set the evaluation_path variable to the model checkpoint created in step 1) above


Model Checkpoint

We also include the checkpoint of the zero-shot model on NUS-WIDE for fast evaluation (./results/release_zs_NUS_WIDE_log_GPU_7_1587185916d2570488/)


Citation

If this code is helpful for your research, we would appreciate if you cite the work:

@article{Huynh-LESA:CVPR20,
  author = {D.~Huynh and E.~Elhamifar},
  title = {A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning},
  journal = {{IEEE} Conference on Computer Vision and Pattern Recognition},
  year = {2020}}
Owner
dathuynh
Ph.D. candidate at Northeastern University
dathuynh
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022